{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2024)
Source:
NDA213972
(2024)
Source URL:
First approved in 2024
Source:
NDA213972
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Sulopenem is a thiolanylthiopenem derivative patented by American multinational pharmaceutical corporation Pfizer Inc as an antibiotic with broad-spectrum antibacterial activity against most gram-positive and gram-negative bacteria. Sulopenem showed concentration-dependent bactericidal activities against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Acinetobacter calcoaceticus. Morphological observation using a phase-contrast microscope revealed that sulopenem induced spherical cell formation with E. coli and K. pneumoniae at lower concentrations and bacteriolysis at higher concentrations. Therapeutic efficacies of sulopenem against systemic infections in mice were almost equal to those of imipenem against Streptococcus pneumoniae.
Status:
US Approved Rx
(2015)
Source:
NDA206494
(2015)
Source URL:
First approved in 1985
Source:
FORTAZ by PAI HOLDINGS PHARM
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ceftazidime is a semisynthetic, broad-spectrum, beta-lactam antibiotic, used especially for Pseudomonas and other gram-negative infections in debilitated patients. Ceftazidime is used to treat lower respiratory tract, skin, urinary tract, blood-stream, joint, and abdominal infections, and meningitis. The drug is given intravenously (IV) or intramuscularly (IM) every 8–12 hours (two or three times a day), with dose and frequency varying by the type of infection, severity, and/or renal function of the patient. Injectable formulations of ceftazidime are currently nebulized "off-label" to manage Cystic Fibrosis, non-Cystic Fibrosis bronchiectasis, drug-resistant nontuberculous mycobacterial infections, ventilator-associated pneumonia, and post-transplant airway infections. Ceftazidime is generally well-tolerated. When side effects do occur, they are most commonly local effects from the intravenous line site, allergic reactions, and gastrointestinal symptoms. According to one manufacturer, in clinical trials, allergic reactions including itching, rash, and fever, happened in fewer than 2% of patients. Rare but more serious allergic reactions, such as toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme, have been reported with this class of antibiotics, including ceftazidime. Gastrointestinal symptoms, including diarrhea, nausea, vomiting, and abdominal pain, were reported in fewer than 2% of patients.
Status:
US Approved Rx
(2019)
Source:
ANDA207594
(2019)
Source URL:
First approved in 1985
Source:
NDA050587
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Imipenem is a beta-lactam antibiotic belongings to the subgroup of carbapenems. Imipenem has a broad spectrum of activity against aerobic and anaerobic Gram positive as well as Gram negative bacteria. It is particularly important for its activity against Pseudomonas aeruginosa and the Enterococcus species. Imipenem is rapidly degraded by the renal enzyme dehydropeptidase when administered alone, and is always co-administered with cilastatin to prevent this inactivation. The bactericidal activity of imipenem results from the inhibition of cell wall synthesis. Its greatest affinity is for
penicillin binding proteins (PBPs) 1A, 1B, 2, 4, 5 and 6 of Escherichia coli, and 1A, 1B, 2, 4 and 5 of
Pseudomonas aeruginosa. The lethal effect is related to binding to PBP 2 and PBP 1B. Imipenem is marketed under the brand name Primaxin. PRIMAXIN I.M. (Imipenem and Cilastatin for Injectable Suspension) is a formulation of imipenem (a
thienamycin antibiotic) and cilastatin sodium (the inhibitor of the renal dipeptidase, dehydropeptidase I).
PRIMAXIN I.M. is a potent broad spectrum antibacterial agent for intramuscular administration.
Status:
US Approved Rx
(2010)
Source:
ANDA065238
(2010)
Source URL:
First approved in 1978
Source:
MEFOXIN by NORVIUM BIOSCIENCE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Cefoxitin is a cephamycin antibiotic often grouped with the second-generation cephalosporins. It is active against a broad range of gram-negative bacteria including anaerobes. The methoxy group in the 7a position provides cefoxitin with a high degree of stability in the presence of beta-lactamases, both penicillinases and cephalosporinases, of gram-negative bacteria. The bactericidal action of cefoxitin results from inhibition of cell wall synthesis.
Status:
US Previously Marketed
Source:
Cedax
(1995)
Source URL:
First approved in 1995
Source:
Cedax
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ceftibuten is a 3rd generation cephalosporin that is FDA approved for the treatment of acute bacterial exacerbations of chronic bronchitis, acute bacterial otitis media, pharyngitis and tonsillitis. Ceftibuten exerts its bactericidal action by binding to essential target proteins of the bacterial cell wall. This binding leads to inhibition of cell-wall synthesis. Common adverse reactions include diarrhea, nausea, vomiting and headache. The effect of increased gastric pH on the bioavailability of ceftibuten was evaluated in 18 healthy adult volunteers. Each volunteer was administered one 400-mg ceftibuten capsule. A single dose of liquid antacid did not affect the Cmax or AUC of ceftibuten; however, 150 mg of ranitidine q12h for 3 days increased the ceftibuten Cmax by 23% and ceftibuten AUC by 16%.
Status:
US Previously Marketed
Source:
CERADON by TAKEDA
(1988)
Source URL:
First approved in 1988
Source:
CERADON by TAKEDA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Cefotiam is a third generation beta-lactam cephalosporin antibiotic. It has broad spectrum activity against Gram positive and Gram negative bacteria. It does not have activity against Pseudomonas aeruginosa. The bactericidal activity of cefotiam results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs).
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cefteram is a semisynthetic cephalosporin formulated for oral administration as the prodrug ester, cefteram pivoxil. The mechanism of action of cefteram is inhibition of bacterial cell wall synthesis. Cefteram exerts its bactericidal activity by strongly binding to penicillin-binding protein (PBP) 3, 1A, and 1Bs. The drug is available in Japan and is used for the treatment of bacterial infections.
Class:
MIXTURE
Targets:
Ramoplanin is a glycolipodepsipeptide antibiotic obtained from the fermentation of Actinoplanes sp. ATCC 33076 that exhibits activity against clinically important multi-drug-resistant, Gram-positive pathogens including vancomycin-resistant Enterococcus (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-intermediate resistant Clostridium difficile. Ramoplanin was first isolated as a complex of three closely related components A1, A2, and A3. Preclinical studies have also demonstrated that ramoplanin exerts a rapid bactericidal effect on S. aureus biofilms and that a clinical vancomycin-resistant S. aureus strain containing the vanA gene was susceptible to ramoplanin. Ramoplanin blocks bacterial cell wall biosynthesis by interfering with peptidoglycan production. Ramoplanin inhibits the N-acetylglucosaminyltransferase-catalysed conversion of lipid intermediate I to lipid intermediate II, a step that occurs before the transglycosylation and transpeptidation reactions. Ramoplanin’s mechanism of action is distinct from that of glycopeptides. Unlike glycopeptides, ramoplanin does not complex with the D-Ala–D-Ala sequence of cell wall precursors. Ramoplanin is being developed for the targeted prophylaxis of recently treated patients with C. difficile infection (CDI) at high risk for infection relapse. Twelve Phase I studies, two Phase II studies (one in CDI and one in VRE) as well as one Phase III study (in VRE) have been conducted
Status:
US Approved Rx
(2024)
Source:
NDA213972
(2024)
Source URL:
First approved in 2024
Source:
NDA213972
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Sulopenem is a thiolanylthiopenem derivative patented by American multinational pharmaceutical corporation Pfizer Inc as an antibiotic with broad-spectrum antibacterial activity against most gram-positive and gram-negative bacteria. Sulopenem showed concentration-dependent bactericidal activities against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Acinetobacter calcoaceticus. Morphological observation using a phase-contrast microscope revealed that sulopenem induced spherical cell formation with E. coli and K. pneumoniae at lower concentrations and bacteriolysis at higher concentrations. Therapeutic efficacies of sulopenem against systemic infections in mice were almost equal to those of imipenem against Streptococcus pneumoniae.
Status:
US Approved Rx
(2024)
Source:
NDA213972
(2024)
Source URL:
First approved in 2024
Source:
NDA213972
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Sulopenem is a thiolanylthiopenem derivative patented by American multinational pharmaceutical corporation Pfizer Inc as an antibiotic with broad-spectrum antibacterial activity against most gram-positive and gram-negative bacteria. Sulopenem showed concentration-dependent bactericidal activities against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Acinetobacter calcoaceticus. Morphological observation using a phase-contrast microscope revealed that sulopenem induced spherical cell formation with E. coli and K. pneumoniae at lower concentrations and bacteriolysis at higher concentrations. Therapeutic efficacies of sulopenem against systemic infections in mice were almost equal to those of imipenem against Streptococcus pneumoniae.