U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 17 of 17 results

Status:
US Approved OTC
Source:
21 CFR 358.710(a)(2) dandruff:dandruff (wash-off) pyrithione zinc
Source URL:
First approved in 1961
Source:
Head & Shoulders Shampoo by Proctor and Gamble
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Pyrithione zinc is an antibacterial and antifungal agent developed by scientists in the 1930's. Since then it has been used to treat seborrheic dermatitis of the scalp and other skin conditions such as eczema, athlete's foot, and vitiligo, as well as psoriasis. Because of its antifungal properties, it is commonly found in dandruff shampoo. Products containing pyrithione zinc are available today with and without prescription, and it is the main ingredient in many over-the-counter creams, lotions, soaps, and shampoos. It also has antibacterial properties and is effective against many pathogens from the Streptococcus and Staphylococcus genera. Pyrithione zinc`s other medical applications include treatments of psoriasis, eczema, ringworm, fungus, athletes foot, dry skin, atopic dermatitis, tinea, and vitiligo. Its antifungal effect is thought to derive from its ability to disrupt membrane transport by blocking the proton pump that energizes the transport mechanism.
Status:
US Approved OTC
Source:
21 CFR 358.710(a)(2) dandruff:dandruff (wash-off) pyrithione zinc
Source URL:
First approved in 1961
Source:
Head & Shoulders Shampoo by Proctor and Gamble
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Pyrithione zinc is an antibacterial and antifungal agent developed by scientists in the 1930's. Since then it has been used to treat seborrheic dermatitis of the scalp and other skin conditions such as eczema, athlete's foot, and vitiligo, as well as psoriasis. Because of its antifungal properties, it is commonly found in dandruff shampoo. Products containing pyrithione zinc are available today with and without prescription, and it is the main ingredient in many over-the-counter creams, lotions, soaps, and shampoos. It also has antibacterial properties and is effective against many pathogens from the Streptococcus and Staphylococcus genera. Pyrithione zinc`s other medical applications include treatments of psoriasis, eczema, ringworm, fungus, athletes foot, dry skin, atopic dermatitis, tinea, and vitiligo. Its antifungal effect is thought to derive from its ability to disrupt membrane transport by blocking the proton pump that energizes the transport mechanism.
Status:
Investigational
Source:
NCT00522652: Phase 1 Interventional Completed Advanced Solid Tumors
(2007)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



PX-478 is a highly potent and selective Hypoxia-inducible Factor-1α (HIF-1α) inhibitor. It lowers HIF-1α protein levels and HIF-1 transactivation in hypoxia and in normoxia in a variety of cancer cell lines, but has a more pronounced effect on translation of proteins, such as HIF-1α in hypoxia. PX-478 also enhances the radiosensitivity of prostate carcinoma PC3 cells. Its inhibition is independent of the tumor suppressor genes VHL and p53, and may be related to derangements in glucose uptake and metabolism due to inhibition of glucose transporter-1 (Glut-1). PX-478 has excellent activity against established human tumor xenografts, inducing tumor regressions with prolonged growth delays which correlate positively with HIF-1 levels. In high-fat-diet mice, PX-478 causes reduced fibrosis and fewer inflammatory infiltrates in their adipose tissues. PX-478 had been in phase I clinical trials by for the treatment of lymphoma and solid tumors. However, this research has been discontinued.
Acriflavine (ACF) is a topical antiseptic. The hydrochloride form is more irritating than the neutral form. It is derived from acridine. Commercial preparations are often mixtures with proflavine. Acriflavine was developed in 1912 by Paul Ehrlich, a German medical researcher, and was used during the First World War against sleeping sickness. ACF has known trypanocidal, antibacterial, and antiviral activities. Effects of ACF on cancer cells were first reported 50 years ago. By present time was demonstrated that ACF a drug, that binds directly to HIF-1 alpha and HIF-2 alpha and inhibits HIF-1 dimerization and transcriptional activity and thus has potent inhibitory effects on tumor growth and vascularization. Also Acriflavine in combination with 3,6-diaminoacridine (proflavine) could prove to be a potential antimalarial drug and its pharmacological action can be due to inhibition of gyrase activity. This is achieved through interaction of the ACF with the DNA substrate. This interaction may lead to conformation change in DNA unsuitable for binding of gyrase with DNA.
Acriflavine (ACF) is a topical antiseptic. The hydrochloride form is more irritating than the neutral form. It is derived from acridine. Commercial preparations are often mixtures with proflavine. Acriflavine was developed in 1912 by Paul Ehrlich, a German medical researcher, and was used during the First World War against sleeping sickness. ACF has known trypanocidal, antibacterial, and antiviral activities. Effects of ACF on cancer cells were first reported 50 years ago. By present time was demonstrated that ACF a drug, that binds directly to HIF-1 alpha and HIF-2 alpha and inhibits HIF-1 dimerization and transcriptional activity and thus has potent inhibitory effects on tumor growth and vascularization. Also Acriflavine in combination with 3,6-diaminoacridine (proflavine) could prove to be a potential antimalarial drug and its pharmacological action can be due to inhibition of gyrase activity. This is achieved through interaction of the ACF with the DNA substrate. This interaction may lead to conformation change in DNA unsuitable for binding of gyrase with DNA.
Acriflavine (ACF) is a topical antiseptic. The hydrochloride form is more irritating than the neutral form. It is derived from acridine. Commercial preparations are often mixtures with proflavine. Acriflavine was developed in 1912 by Paul Ehrlich, a German medical researcher, and was used during the First World War against sleeping sickness. ACF has known trypanocidal, antibacterial, and antiviral activities. Effects of ACF on cancer cells were first reported 50 years ago. By present time was demonstrated that ACF a drug, that binds directly to HIF-1 alpha and HIF-2 alpha and inhibits HIF-1 dimerization and transcriptional activity and thus has potent inhibitory effects on tumor growth and vascularization. Also Acriflavine in combination with 3,6-diaminoacridine (proflavine) could prove to be a potential antimalarial drug and its pharmacological action can be due to inhibition of gyrase activity. This is achieved through interaction of the ACF with the DNA substrate. This interaction may lead to conformation change in DNA unsuitable for binding of gyrase with DNA.
Acriflavine (ACF) is a topical antiseptic. The hydrochloride form is more irritating than the neutral form. It is derived from acridine. Commercial preparations are often mixtures with proflavine. Acriflavine was developed in 1912 by Paul Ehrlich, a German medical researcher, and was used during the First World War against sleeping sickness. ACF has known trypanocidal, antibacterial, and antiviral activities. Effects of ACF on cancer cells were first reported 50 years ago. By present time was demonstrated that ACF a drug, that binds directly to HIF-1 alpha and HIF-2 alpha and inhibits HIF-1 dimerization and transcriptional activity and thus has potent inhibitory effects on tumor growth and vascularization. Also Acriflavine in combination with 3,6-diaminoacridine (proflavine) could prove to be a potential antimalarial drug and its pharmacological action can be due to inhibition of gyrase activity. This is achieved through interaction of the ACF with the DNA substrate. This interaction may lead to conformation change in DNA unsuitable for binding of gyrase with DNA.

Showing 11 - 17 of 17 results