U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 28 results

Dimethyl fumarate (DMF) is the methyl ester of fumaric acid. DMF was initially recognized as a very effective hypoxic cell radiosensitizer. Later, DMF combined with three other fumaric acid esters (FAE) was licensed in Germany as oral therapy for psoriasis (trade name Fumaderm). Phase III clinical trials found that DMF (BG-12) successfully reduced relapse rate and increased time to progression of disability in multiple sclerosis (trade name Tecfidera). DMF is thought to have immunomodulatory properties without significant immunosuppression. The mechanism of action of dimethyl fumarate in multiple sclerosis is not well understood. It is thought to involve dimethyl fumarate degradation to its active metabolite monomethyl fumarate (MMF) then MMF up-regulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway that is activated in response to oxidative stress. Dimethyl fumarate is marketed under the brand name Tecfidera.
Niacin (also known as vitamin B3 and nicotinic acid) is bio converted to nicotinamide which is further converted to nicotinamide adenine dinucleotide (NAD+) and the hydride equivalent (NADH) which are coenzymes necessary for tissue metabolism, lipid metabolism, and glycogenolysis. Niacin (but not nicotinamide) in gram doses reduces LDL-C, Apo B, Lp(a), TG, and TC, and increases HDL-C. The increase in HDL-C is associated with an increase in apolipoprotein A-I (Apo A-I) and a shift in the distribution of HDL subfractions. These shifts include an increase in the HDL2:HDL3 ratio, and an elevation in lipoprotein A-I (Lp A-I, an HDL-C particle containing only Apo A-I). The mechanism by which niacin alters lipid profiles is not completely understood and may involve several actions, including partial inhibition of release of free fatty acids from adipose tissue, and increased lipoprotein lipase activity (which may increase the rate of chylomicron triglyceride removal from plasma). Niacin decreases the rate of hepatic synthesis of VLDL-C and LDL-C, and does not appear to affect fecal excretion of fats, sterols, or bile acids. As an adjunct to diet, the efficacy of niacin and lovastatin in improving lipid profiles (either individually, or in combination with each other, or niacin in combination with other statins) for the treatment of dyslipidemia has been well documented. The effect of combined therapy with niacin and lovastatin on cardiovascular morbidity and mortality has not been determined. In addition, preliminary reports suggest that niacin causes favorable LDL particle size transformations, although the clinical relevance of this effect is not yet clear. April 15, 2016: Based on several large cardiovascular outcome trials including AIM-HIGH, ACCORD, and HPS2-THRIVE, the FDA decided that "scientific evidence no longer supports the conclusion that a drug-induced reduction in triglyceride levels and/or increase in HDL-cholesterol levels in statin-treated patients results in a reduction in the risk of cardiovascular events" Consistent with this conclusion, the FDA has determined that the benefits of niacin ER tablets for coadministration with statins no longer outweigh the risks, and the approval for this indication should be withdrawn.
Status:
Investigational
Source:
NCT00847197: Phase 2 Interventional Completed Dyslipidemia
(2008)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



MK-1903 is a potent and selective hydroxycarboxylic acid receptor 2 (HCA2, GPR109A) full agonist. Exhibits no binding at the GRP109B receptor. This drug had been in phase II clinical trial for the treatment of atherosclerosis and Dyslipidemia. But then, according to Merck, elevation of HDL cholesterol relative to placebo did not meet the trial's pre-specified primary objective for efficacy; no safety signals were implicated as drivers of the decision to discontinue development.
Acifran (AY-25,712), an uncommercialized Ayerst compound exerting lipid-lowering activity in vivo, has been shown to also elicit similar effects as niacin in preliminary clinical testing and has been shown to bind to both high affinity (HM74A; GPR109A) and low affinity (HM74; GPR109B) niacin receptors. The EC50 values of the separated acifran enantiomers for the GPR109a and 109b receptors showed that, as with acifran itself, the (+)-enantiomers were essentially twice as active as the racemic mixtures, whereas the activity of the (-)-enantiomers was more variable and highly dependent on purity. S-enantiomer of acifran is the active principle. All of the activity of racemic acifran could be attributed to the (S)-enantiomer, and hence, from this precedent, (+)-enantiomers would be assigned to the S-configuration. However, the absolute configuration was not confirmed experimentally.
Status:
Investigational
Source:
NCT00337415: Phase 2 Interventional Terminated Dyslipidemia
(2006)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

MK-0354 is a GPR109a (Niacin receptor 1) agonist, originated by Arena Pharmaceuticals. In phase II of clinical trials against dyslipidemia treatment with MK-0354 failed to produce changes in high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, or triglycerides.
Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

MK-6892 is niacin receptor 2 agonist, developed by Merkc. In preclinical experiments, it demonstrated reduction of free fatty acid levels by ~85%, with flushing side-effect evident only at the highest dose tested.
Acipimox (5-methylpyrazinecarboxylic acid 4-oxide) is a new lipolysis inhibitor that has a distant chemical relationship with nicotinic acid (NA). The anti-lipolytic action of acipimox is mediated through suppression of intracellular cyclic AMP levels, with the subsequent decrease in cyclic AMP-dependent protein kinase activity, leading to the reduced association of hormone-sensitive lipase with triacylglycerol substrate in the lipid droplet of adipocytes. Acipimox has been identified as an agonist at G-protein coupled nicotinic acid HM74A and HM74B receptors. Acipimox (Olbetam) is indicated for the treatment as alternative or adjunct treatment to reduce triglyceride levels in patients who have not responded adequately to other treatments such as statin or fibrate treatment for hypertriglyceridaemia (Fredrickson type IV hyperlipoproteinaemia) and hypercholesterolaemia and hypertriglyceridaemia (Fredrickson type IIb hyperlipoproteinaemia).
Dimethyl fumarate (DMF) is the methyl ester of fumaric acid. DMF was initially recognized as a very effective hypoxic cell radiosensitizer. Later, DMF combined with three other fumaric acid esters (FAE) was licensed in Germany as oral therapy for psoriasis (trade name Fumaderm). Phase III clinical trials found that DMF (BG-12) successfully reduced relapse rate and increased time to progression of disability in multiple sclerosis (trade name Tecfidera). DMF is thought to have immunomodulatory properties without significant immunosuppression. The mechanism of action of dimethyl fumarate in multiple sclerosis is not well understood. It is thought to involve dimethyl fumarate degradation to its active metabolite monomethyl fumarate (MMF) then MMF up-regulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway that is activated in response to oxidative stress. Dimethyl fumarate is marketed under the brand name Tecfidera.
Dimethyl fumarate (DMF) is the methyl ester of fumaric acid. DMF was initially recognized as a very effective hypoxic cell radiosensitizer. Later, DMF combined with three other fumaric acid esters (FAE) was licensed in Germany as oral therapy for psoriasis (trade name Fumaderm). Phase III clinical trials found that DMF (BG-12) successfully reduced relapse rate and increased time to progression of disability in multiple sclerosis (trade name Tecfidera). DMF is thought to have immunomodulatory properties without significant immunosuppression. The mechanism of action of dimethyl fumarate in multiple sclerosis is not well understood. It is thought to involve dimethyl fumarate degradation to its active metabolite monomethyl fumarate (MMF) then MMF up-regulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway that is activated in response to oxidative stress. Dimethyl fumarate is marketed under the brand name Tecfidera.