U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 61 - 70 of 125 results

Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ACHIRAL)



Aptiganel (CNS 1102, Cerestat), a selective ligand with antagonized properties for the ion-channel site of the N-methyl-D-aspartate receptor-channel complex, was developed as a neuroprotective agent for focal brain ischemia. However, in the clinical trials in patients with acute ischemic stroke aptiganel was not efficacious at either of the tested doses and may be harmful. That is why its further study was discontinued.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ACHIRAL)



Flupirtine is a triaminopyridine derivative having a chemical structure - 2-amino-3-ethoxy-carbonylamino-6-4-fluoro-benzylamino-pyridine. The basic molecule used for synthesis of flupirtine was 2, 6-dichoro 3-nitropyridine. It was first synthesized in 1980s in Germany and was marketed by Degussa Pharma. Flupirtine is a centrally acting, non-opioid analgesic that is available in a number of European countries for the treatment of a variety of pain states. The therapeutic benefits seen with flupirtine relate to its unique pharmacological properties. Flupirtine displays indirect NDMA receptor antagonism via activation of potassium channels and is the first representative of a pharmacological class denoted the 'selective neuronal potassium channel openers'. The generation of the M-current is facilitated by flupirtine via the opening of neuronal Kv7 potassium channels. The opening of these channels inhibits exaggerated neuronal action potential generation and controls neuronal excitability. Neuronal hyperexcitability is a physiological component of many pain states such as chronic pain, migraine and neurogenic pain.
Dimebon (latrepirdine) is an orally available, small molecule, gamma carboline derivative that was developed and used in Russia as an over-the-counter oral antihistamine for allergy treatment since 1980s. In 1990s it was shown that Dimebon has promising potential in treating neurodegenerative diseases. In 2003, Medivation Inc acquired the rights to Dimebon. Medivation went public in December 2004, with Dimebon as the only drug in its pipeline. The product was being developed by Medivation and Pfizer as a treatment for early-stage Alzheimer's disease and Huntington's disease. However, development was discontinued by Medivation and Pfizer in early 2012. Dimebon inhibits alpha-Adrenergic receptors (alpha1A, alpha1B, alpha1D, and alpha2A), Histamine H1 and H2 receptors and Serotonin 5-HT2c, 5-HT5A, 5-HT6 receptors with high affinity. Dimebon may act by blocking NMDA receptors or voltage-gated Ca2+ channels and by preventing mitochondrial permeability pore transition.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Caroverine is a spasmolytic drug used in tinnitus treatment improves mechanosensitivity and mechanotransduction phenomenon and otoneuroprotective agent. Caroverine acts as an N-type calcium channel blocker, competitive AMPA receptor antagonist, and non-competitive NMDA receptor antagonist. When excessive glutamate binds to NMDA receptors, the receptor opens and allows calcium and sodium to enter the neuron, abnormal levels of calcium disturbs ionic balance causing spontaneous depolarization state. Pathological spontaneous depolarization state is reversed back to physiological polarization state by antagonistic property of Caroverine.
Acamprosate was the third medication, after disulfiram and naltrexone, to receive U.S. Food and Drug Administration (FDA) approval for postwithdrawal maintenance of alcohol abstinence. The French pharmaceutical company Laboratoires Meram began clinical development and testing of acamprosate in 1982. From 1982 to 1988, acamprosate was tested for safety and for efficacy as a treatment for alcohol dependence. Based on these studies, in 1989 Laboratoires Meram was granted marketing authorization for acamprosate in France under the trade name Aotal®. Since then, acamprosate has been extensively used and studied throughout Europe and, subsequently, in the United States. Although acamprosate has been used in Europe for more than 20 years, it was not approved by FDA until July 2004. Acamprosate became available for use in the United States in January 2005, under the trade name Campral® Delayed-Release Tablets (Merck Santé, a subsidiary of Merck KGaA, Darmstadt, Germany). Campral is currently marketed in the United States by Forest Pharmaceuticals. The mechanism of action of acamprosate in maintenance of alcohol abstinence is not completely understood. Chronic alcohol exposure is hypothesized to alter the normal balance between neuronal excitation and inhibition. in vitro and in vivo studies in animals have provided evidence to suggest acamprosate may interact with glutamate and GABA neurotransmitter systems centrally, and has led to the hypothesis that acamprosate restores this balance. It seems to inhibit NMDA receptors while activating GABA receptors.
NAMENDA (marketed under the brands Namenda among others) is an N-methyl-D-aspartate (NMDA) receptor antagonist indicated for the treatment of moderate to severe dementia of the Alzheimer’s type. Persistent activation of central nervous system N-methyl-D-aspartate (NMDA) receptors by the excitatory amino acid glutamate has been hypothesized to contribute to the symptomatology of Alzheimer’s disease. Memantine is postulated to exert its therapeutic effect through its action as a low to moderate affinity uncompetitive (open-channel) NMDA receptor antagonist which binds preferentially to the NMDA receptor-operated cation channels. There is no evidence that memantine prevents or slows neurodegeneration in patients with Alzheimer’s disease. Memantine showed low to negligible affinity for GABA, benzodiazepine, dopamine, adrenergic, histamine and glycine receptors and for voltage-dependent Ca2+, Na+ or K+ channels. Memantine also showed antagonistic effects at the 5HT3 receptor with a potency similar to that for the NMDA receptor and blocked nicotinic acetylcholine receptors with one-sixth to one-tenth the potency. In vitro studies have shown that memantine does not affect the reversible inhibition of acetylcholinesterase by donepezil, galantamine, or tacrine.

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Ketamine (brand name Ketalar) is a cyclohexanone derivative used for induction of anesthesia. Ketalar is indicated as the sole anesthetic agent for diagnostic and surgical procedures that do not require skeletal muscle relaxation; also, it is indicated for the induction of anesthesia prior to the administration of other general anesthetic agents. Ketamine blocks NMDA receptors through an interaction with sites thought to be located within the ion channel pore region. However, the complete pharmacology of ketamine is more complex, and it is known to directly interact with a variety of other sites to varying degrees. Recently, it was shown that inclusion of the NR3B subunit does not alter the ketamine sensitivity of recombinant NR1/NR2 receptors expressed in oocytes. Likewise, 100 μM ketamine produced only weak inhibition of the glycine-induced current of NR1/NR3A/NR3B receptors. The side effects of ketamine noted in clinical studies include psychedelic symptoms (hallucinations, memory defects, panic attacks), nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity. The recreational use of ketamine is increasing and comes with a variety of additional risks ranging from bladder and renal complications to persistent psychotypical behaviour and memory defects. Ketamine was first synthesized in 1962 by Calvin Stevens at Parke-Davis Co (now Pfizer) as an alternative anesthetic to phencyclidine. It was first used in humans in 1965 by Corssen and Domino and was introduced into clinical practice by 1970.

Class (Stereo):
CHEMICAL (MIXED)


Conditions:

Ketamine (brand name Ketalar) is a cyclohexanone derivative used for induction of anesthesia. Ketalar is indicated as the sole anesthetic agent for diagnostic and surgical procedures that do not require skeletal muscle relaxation; also, it is indicated for the induction of anesthesia prior to the administration of other general anesthetic agents. Ketamine blocks NMDA receptors through an interaction with sites thought to be located within the ion channel pore region. However, the complete pharmacology of ketamine is more complex, and it is known to directly interact with a variety of other sites to varying degrees. Recently, it was shown that inclusion of the NR3B subunit does not alter the ketamine sensitivity of recombinant NR1/NR2 receptors expressed in oocytes. Likewise, 100 μM ketamine produced only weak inhibition of the glycine-induced current of NR1/NR3A/NR3B receptors. The side effects of ketamine noted in clinical studies include psychedelic symptoms (hallucinations, memory defects, panic attacks), nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity. The recreational use of ketamine is increasing and comes with a variety of additional risks ranging from bladder and renal complications to persistent psychotypical behaviour and memory defects. Ketamine was first synthesized in 1962 by Calvin Stevens at Parke-Davis Co (now Pfizer) as an alternative anesthetic to phencyclidine. It was first used in humans in 1965 by Corssen and Domino and was introduced into clinical practice by 1970.

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Ketamine (brand name Ketalar) is a cyclohexanone derivative used for induction of anesthesia. Ketalar is indicated as the sole anesthetic agent for diagnostic and surgical procedures that do not require skeletal muscle relaxation; also, it is indicated for the induction of anesthesia prior to the administration of other general anesthetic agents. Ketamine blocks NMDA receptors through an interaction with sites thought to be located within the ion channel pore region. However, the complete pharmacology of ketamine is more complex, and it is known to directly interact with a variety of other sites to varying degrees. Recently, it was shown that inclusion of the NR3B subunit does not alter the ketamine sensitivity of recombinant NR1/NR2 receptors expressed in oocytes. Likewise, 100 μM ketamine produced only weak inhibition of the glycine-induced current of NR1/NR3A/NR3B receptors. The side effects of ketamine noted in clinical studies include psychedelic symptoms (hallucinations, memory defects, panic attacks), nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity. The recreational use of ketamine is increasing and comes with a variety of additional risks ranging from bladder and renal complications to persistent psychotypical behaviour and memory defects. Ketamine was first synthesized in 1962 by Calvin Stevens at Parke-Davis Co (now Pfizer) as an alternative anesthetic to phencyclidine. It was first used in humans in 1965 by Corssen and Domino and was introduced into clinical practice by 1970.

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Ketamine (brand name Ketalar) is a cyclohexanone derivative used for induction of anesthesia. Ketalar is indicated as the sole anesthetic agent for diagnostic and surgical procedures that do not require skeletal muscle relaxation; also, it is indicated for the induction of anesthesia prior to the administration of other general anesthetic agents. Ketamine blocks NMDA receptors through an interaction with sites thought to be located within the ion channel pore region. However, the complete pharmacology of ketamine is more complex, and it is known to directly interact with a variety of other sites to varying degrees. Recently, it was shown that inclusion of the NR3B subunit does not alter the ketamine sensitivity of recombinant NR1/NR2 receptors expressed in oocytes. Likewise, 100 μM ketamine produced only weak inhibition of the glycine-induced current of NR1/NR3A/NR3B receptors. The side effects of ketamine noted in clinical studies include psychedelic symptoms (hallucinations, memory defects, panic attacks), nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity. The recreational use of ketamine is increasing and comes with a variety of additional risks ranging from bladder and renal complications to persistent psychotypical behaviour and memory defects. Ketamine was first synthesized in 1962 by Calvin Stevens at Parke-Davis Co (now Pfizer) as an alternative anesthetic to phencyclidine. It was first used in humans in 1965 by Corssen and Domino and was introduced into clinical practice by 1970.