{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Diamminedichlorodihydroxyplatinum IV is the platinum-based antineoplasticis agent. Oxaliplatin is cis, cis, trans- isomer of Diamminedichlorodihydroxyplatinum IV. Oxaliplatin show high stability and therefore can be utilized orally for outpatient care. Although oxoplatin is capable of binding directly to DNA after prolonged incubation, platinum(IV) agents are considered to be largely inert prodrugs that are converted to highly cytotoxic platinum(II) compounds by reducing substances, enzymes, or microenvironmental conditions. Reaction of oxoplatin with 0.1 M hydrogen chloride mimicking gastric acid yields cis-diammine-tetrachlorido-platinum(IV) (DATCP[IV]), which exhibits two-fold increased activity. The oxoplatin metabolite DATCP(IV) constitutes a potent cytotoxic derivative that may be produced by gastric acid or acidic areas prevailing in larger solid tumors, depending on the respective pharmaceutical formulation of oxoplatin.
Status:
Possibly Marketed Outside US
Source:
Mustargen by Gilman, A.|Goodman, L.S.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Mechlorethamine Oxide was approved by the FDA in 1949 for the treatment of hematologic malignancies, alkylating agents are the oldest class of anticancer agents. A biologic alkylating agent exerts its cytotoxic effects by forming DNA adducts and DNA interstrand crosslinks, thereby inhibiting rapidly proliferating cells. Mechlorethamine Oxide is an antineoplastic agent used to treat Hodgkin desease and Lymphoma. Known under the brand names of Mustargen and Valchlor in USA. The FDA granted marketing approval for the orphan drug Valchlor (mechlorethamine) gel on August 23, 2013 for the topical treatment of stage IA and IB mycosis fungoides-type cutaneous T-cell lymphoma (CTCL) in patients who have received prior skin-directed therapy. Each tube of Valchlor contains 0.016% of mechlorethamine which is equivalent to 0.02% mechlorethamine HCL.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Diamminedichlorodihydroxyplatinum IV is the platinum-based antineoplasticis agent. Oxaliplatin is cis, cis, trans- isomer of Diamminedichlorodihydroxyplatinum IV. Oxaliplatin show high stability and therefore can be utilized orally for outpatient care. Although oxoplatin is capable of binding directly to DNA after prolonged incubation, platinum(IV) agents are considered to be largely inert prodrugs that are converted to highly cytotoxic platinum(II) compounds by reducing substances, enzymes, or microenvironmental conditions. Reaction of oxoplatin with 0.1 M hydrogen chloride mimicking gastric acid yields cis-diammine-tetrachlorido-platinum(IV) (DATCP[IV]), which exhibits two-fold increased activity. The oxoplatin metabolite DATCP(IV) constitutes a potent cytotoxic derivative that may be produced by gastric acid or acidic areas prevailing in larger solid tumors, depending on the respective pharmaceutical formulation of oxoplatin.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Diamminedichlorodihydroxyplatinum IV is the platinum-based antineoplasticis agent. Oxaliplatin is cis, cis, trans- isomer of Diamminedichlorodihydroxyplatinum IV. Oxaliplatin show high stability and therefore can be utilized orally for outpatient care. Although oxoplatin is capable of binding directly to DNA after prolonged incubation, platinum(IV) agents are considered to be largely inert prodrugs that are converted to highly cytotoxic platinum(II) compounds by reducing substances, enzymes, or microenvironmental conditions. Reaction of oxoplatin with 0.1 M hydrogen chloride mimicking gastric acid yields cis-diammine-tetrachlorido-platinum(IV) (DATCP[IV]), which exhibits two-fold increased activity. The oxoplatin metabolite DATCP(IV) constitutes a potent cytotoxic derivative that may be produced by gastric acid or acidic areas prevailing in larger solid tumors, depending on the respective pharmaceutical formulation of oxoplatin.
Status:
Possibly Marketed Outside US
Source:
NIDRAN by Sankyo
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Nimustine is one of nitrosoureas used in the treatment of cancer. Nimustine alkylates and crosslinks DNA, thereby causing DNA fragmentation, inhibition of protein synthesis, and cell death. It is used in the treatment of brain tumor (in particular, high-grade gliomas), gastrointestinal cancers (stomach cancer, liver cancer, colorectal cancer), lung cancer, malignant lymphoma, chronic leukemia. Nimustine side effects are: leukopenia, thrombocytopenia, hypoproteinemia, anemia, Increased bleeding, proteinuria, interstitial pneumonia, anorexia, stomatitis, nausea, vomiting, general weakness, fever, headache, dizziness, seizures, alopecia, allergic reactions (rash).
Status:
Possibly Marketed Outside US
Source:
Pixuvri by Boehringer Mannheim
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Pixantrone is a novel anthracenedione. It is a weak inhibitor of topoisomerase II. Pixantrone directly alkylates DNA forming stable DNA adducts and cross-strand breaks. Pixuvri is approved for the treatment of adult patients with multiply relapsed or refractory aggressive Non-Hodgkin lymphomas. It is used for patients whose cancer does not respond or has returned after they have received other chemotherapy treatments. The most frequent AE were seen in the blood (mainly neutropaenia), gastrointestinal (nausea, abdominal pain, constipation) and respiratory systems (cough, dyspnea). No drug-drug interaction studies have been submitted and no drug interactions have been reported in human subjects
Status:
Possibly Marketed Outside US
Source:
CELIPTIUM by Institut Gustave-Roussy|Sanofi
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Elliptinium is an antineoplastic agent, which was used in the treatment of metastatic breast cancer in France under the name Celiptium. The drug is known to intercalate into DNA and inhibit topoisomerase II. Several studies have demonstrated that this molecule can be oxidized, yielding a reactive electrophilic form, which is able to bind covalently to a nucleophilic biological molecule.
Status:
US Approved Rx
(2001)
Source:
ANDA065042
(2001)
Source URL:
First approved in 1973
Source:
BLENOXANE by BRISTOL MYERS SQUIBB
Source URL:
Class:
MIXTURE
Conditions:
Bleomycin sulfate is an antineoplastic antibiotic isolated
from Streptomyces verticillus. It is a mixture of
glycopeptide antibiotics containing primarily Bleomycin
A2 (~70%) and B2 (~30%). Bleomycin binds to DNA, inhibits DNA
synthesis, and causes single strand scission of DNA in
vivo and in vitro at specific base sequences.
Status:
US Approved Rx
(2001)
Source:
ANDA065042
(2001)
Source URL:
First approved in 1973
Source:
BLENOXANE by BRISTOL MYERS SQUIBB
Source URL:
Class:
MIXTURE
Conditions:
Bleomycin sulfate is an antineoplastic antibiotic isolated
from Streptomyces verticillus. It is a mixture of
glycopeptide antibiotics containing primarily Bleomycin
A2 (~70%) and B2 (~30%). Bleomycin binds to DNA, inhibits DNA
synthesis, and causes single strand scission of DNA in
vivo and in vitro at specific base sequences.
Status:
US Previously Marketed
First marketed in 1919
Class:
MIXTURE
Targets:
Conditions:
Acriflavine (ACF) is a topical antiseptic. The hydrochloride form is more irritating than the neutral form. It is derived from acridine. Commercial preparations are often mixtures with proflavine. Acriflavine was developed in 1912 by Paul Ehrlich, a German medical researcher, and was used during the First World War against sleeping sickness. ACF has known trypanocidal, antibacterial, and antiviral activities. Effects of ACF on cancer cells were first reported 50 years ago. By present time was demonstrated that ACF a drug, that binds directly to HIF-1 alpha and HIF-2 alpha and inhibits HIF-1 dimerization and transcriptional activity and thus has potent inhibitory effects on tumor growth and vascularization. Also Acriflavine in combination with 3,6-diaminoacridine (proflavine) could prove to be a potential antimalarial drug and its pharmacological action can be due to inhibition of gyrase activity. This is achieved through interaction of the ACF with the DNA substrate. This interaction may lead to conformation change in DNA unsuitable for binding of gyrase with DNA.