{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(1994)
Source:
ANDA074473
(1994)
Source URL:
First approved in 1976
Source:
TOLECTIN by ORTHO MCNEIL JANSSEN
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Tolmetin is a nonsteroidal anti-inflammatory agent. It was marketed as Tolectin in USA. TOLECTIN (tolmetin sodium) is indicated for the relief of signs and symptoms of
rheumatoid arthritis and osteoarthritis. TOLECTIN is indicated in the treatment of
acute flares and the long-term management of the chronic disease.
TOLECTIN is also indicated for treatment of juvenile rheumatoid arthritis. The mode of action of tolmetin is not known. However, studies in laboratory animals and man have demonstrated that the anti-inflammatory action of tolmetin is not due to pituitary-adrenal stimulation. Tolmetin inhibits prostaglandin synthetase in vitro and lowers the plasma level of prostaglandin E in man. This reduction in prostaglandin synthesis may be responsible for the anti-inflammatory action.
Status:
US Approved Rx
(1994)
Source:
ANDA074473
(1994)
Source URL:
First approved in 1976
Source:
TOLECTIN by ORTHO MCNEIL JANSSEN
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Tolmetin is a nonsteroidal anti-inflammatory agent. It was marketed as Tolectin in USA. TOLECTIN (tolmetin sodium) is indicated for the relief of signs and symptoms of
rheumatoid arthritis and osteoarthritis. TOLECTIN is indicated in the treatment of
acute flares and the long-term management of the chronic disease.
TOLECTIN is also indicated for treatment of juvenile rheumatoid arthritis. The mode of action of tolmetin is not known. However, studies in laboratory animals and man have demonstrated that the anti-inflammatory action of tolmetin is not due to pituitary-adrenal stimulation. Tolmetin inhibits prostaglandin synthetase in vitro and lowers the plasma level of prostaglandin E in man. This reduction in prostaglandin synthesis may be responsible for the anti-inflammatory action.
Status:
US Approved Rx
(1994)
Source:
ANDA074473
(1994)
Source URL:
First approved in 1976
Source:
TOLECTIN by ORTHO MCNEIL JANSSEN
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Tolmetin is a nonsteroidal anti-inflammatory agent. It was marketed as Tolectin in USA. TOLECTIN (tolmetin sodium) is indicated for the relief of signs and symptoms of
rheumatoid arthritis and osteoarthritis. TOLECTIN is indicated in the treatment of
acute flares and the long-term management of the chronic disease.
TOLECTIN is also indicated for treatment of juvenile rheumatoid arthritis. The mode of action of tolmetin is not known. However, studies in laboratory animals and man have demonstrated that the anti-inflammatory action of tolmetin is not due to pituitary-adrenal stimulation. Tolmetin inhibits prostaglandin synthetase in vitro and lowers the plasma level of prostaglandin E in man. This reduction in prostaglandin synthesis may be responsible for the anti-inflammatory action.
Status:
US Approved Rx
(2020)
Source:
NDA211733
(2020)
Source URL:
First approved in 1974
Source:
MOTRIN by MCNEIL CONSUMER
Source URL:
Class (Stereo):
CHEMICAL (MIXED)
Targets:
Ibuprofen is a nonsteroidal anti-inflammatory agent (NSAIA) or nonsteroidal anti-inflammatory drug (NSAID), with analgesic and antipyretic properties. Ibuprofen has pharmacologic actions similar to those of other prototypical NSAIAs, which are thought to act through inhibition of prostaglandin synthesis. It’s used temporarily relieves minor aches and pains due to: headache; the common cold; muscular aches; backache; toothache; minor pain of arthritis; menstrual cramps and temporarily reduces fever. The exact mechanism of action of ibuprofen is unknown. Ibuprofen is a non-selective inhibitor of cyclooxygenase, an enzyme invovled in prostaglandin synthesis via the arachidonic acid pathway. Its pharmacological effects are believed to be due to inhibition cylooxygenase-2 (COX-2) which decreases the synthesis of prostaglandins involved in mediating inflammation, pain, fever and swelling. Antipyretic effects may be due to action on the hypothalamus, resulting in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation. Inhibition of COX-1 is thought to cause some of the side effects of ibuprofen including GI ulceration. Ibuprofen is administered as a racemic mixture. The R-enantiomer undergoes extensive interconversion to the S-enantiomer in vivo. The S-enantiomer is believed to be the more pharmacologically active enantiomer.
Status:
US Approved Rx
(2020)
Source:
NDA211733
(2020)
Source URL:
First approved in 1974
Source:
MOTRIN by MCNEIL CONSUMER
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Ibuprofen is a nonsteroidal anti-inflammatory agent (NSAIA) or nonsteroidal anti-inflammatory drug (NSAID), with analgesic and antipyretic properties. Ibuprofen has pharmacologic actions similar to those of other prototypical NSAIAs, which are thought to act through inhibition of prostaglandin synthesis. It’s used temporarily relieves minor aches and pains due to: headache; the common cold; muscular aches; backache; toothache; minor pain of arthritis; menstrual cramps and temporarily reduces fever. The exact mechanism of action of ibuprofen is unknown. Ibuprofen is a non-selective inhibitor of cyclooxygenase, an enzyme invovled in prostaglandin synthesis via the arachidonic acid pathway. Its pharmacological effects are believed to be due to inhibition cylooxygenase-2 (COX-2) which decreases the synthesis of prostaglandins involved in mediating inflammation, pain, fever and swelling. Antipyretic effects may be due to action on the hypothalamus, resulting in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation. Inhibition of COX-1 is thought to cause some of the side effects of ibuprofen including GI ulceration. Ibuprofen is administered as a racemic mixture. The R-enantiomer undergoes extensive interconversion to the S-enantiomer in vivo. The S-enantiomer is believed to be the more pharmacologically active enantiomer.
Status:
US Approved Rx
(2020)
Source:
NDA211733
(2020)
Source URL:
First approved in 1974
Source:
MOTRIN by MCNEIL CONSUMER
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Ibuprofen is a nonsteroidal anti-inflammatory agent (NSAIA) or nonsteroidal anti-inflammatory drug (NSAID), with analgesic and antipyretic properties. Ibuprofen has pharmacologic actions similar to those of other prototypical NSAIAs, which are thought to act through inhibition of prostaglandin synthesis. It’s used temporarily relieves minor aches and pains due to: headache; the common cold; muscular aches; backache; toothache; minor pain of arthritis; menstrual cramps and temporarily reduces fever. The exact mechanism of action of ibuprofen is unknown. Ibuprofen is a non-selective inhibitor of cyclooxygenase, an enzyme invovled in prostaglandin synthesis via the arachidonic acid pathway. Its pharmacological effects are believed to be due to inhibition cylooxygenase-2 (COX-2) which decreases the synthesis of prostaglandins involved in mediating inflammation, pain, fever and swelling. Antipyretic effects may be due to action on the hypothalamus, resulting in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation. Inhibition of COX-1 is thought to cause some of the side effects of ibuprofen including GI ulceration. Ibuprofen is administered as a racemic mixture. The R-enantiomer undergoes extensive interconversion to the S-enantiomer in vivo. The S-enantiomer is believed to be the more pharmacologically active enantiomer.
Status:
US Approved Rx
(2020)
Source:
NDA211733
(2020)
Source URL:
First approved in 1974
Source:
MOTRIN by MCNEIL CONSUMER
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
Ibuprofen is a nonsteroidal anti-inflammatory agent (NSAIA) or nonsteroidal anti-inflammatory drug (NSAID), with analgesic and antipyretic properties. Ibuprofen has pharmacologic actions similar to those of other prototypical NSAIAs, which are thought to act through inhibition of prostaglandin synthesis. It’s used temporarily relieves minor aches and pains due to: headache; the common cold; muscular aches; backache; toothache; minor pain of arthritis; menstrual cramps and temporarily reduces fever. The exact mechanism of action of ibuprofen is unknown. Ibuprofen is a non-selective inhibitor of cyclooxygenase, an enzyme invovled in prostaglandin synthesis via the arachidonic acid pathway. Its pharmacological effects are believed to be due to inhibition cylooxygenase-2 (COX-2) which decreases the synthesis of prostaglandins involved in mediating inflammation, pain, fever and swelling. Antipyretic effects may be due to action on the hypothalamus, resulting in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation. Inhibition of COX-1 is thought to cause some of the side effects of ibuprofen including GI ulceration. Ibuprofen is administered as a racemic mixture. The R-enantiomer undergoes extensive interconversion to the S-enantiomer in vivo. The S-enantiomer is believed to be the more pharmacologically active enantiomer.
Status:
US Approved Rx
(2020)
Source:
NDA211733
(2020)
Source URL:
First approved in 1974
Source:
MOTRIN by MCNEIL CONSUMER
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
Ibuprofen is a nonsteroidal anti-inflammatory agent (NSAIA) or nonsteroidal anti-inflammatory drug (NSAID), with analgesic and antipyretic properties. Ibuprofen has pharmacologic actions similar to those of other prototypical NSAIAs, which are thought to act through inhibition of prostaglandin synthesis. It’s used temporarily relieves minor aches and pains due to: headache; the common cold; muscular aches; backache; toothache; minor pain of arthritis; menstrual cramps and temporarily reduces fever. The exact mechanism of action of ibuprofen is unknown. Ibuprofen is a non-selective inhibitor of cyclooxygenase, an enzyme invovled in prostaglandin synthesis via the arachidonic acid pathway. Its pharmacological effects are believed to be due to inhibition cylooxygenase-2 (COX-2) which decreases the synthesis of prostaglandins involved in mediating inflammation, pain, fever and swelling. Antipyretic effects may be due to action on the hypothalamus, resulting in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation. Inhibition of COX-1 is thought to cause some of the side effects of ibuprofen including GI ulceration. Ibuprofen is administered as a racemic mixture. The R-enantiomer undergoes extensive interconversion to the S-enantiomer in vivo. The S-enantiomer is believed to be the more pharmacologically active enantiomer.
Status:
US Approved Rx
(2020)
Source:
NDA211733
(2020)
Source URL:
First approved in 1974
Source:
MOTRIN by MCNEIL CONSUMER
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Ibuprofen is a nonsteroidal anti-inflammatory agent (NSAIA) or nonsteroidal anti-inflammatory drug (NSAID), with analgesic and antipyretic properties. Ibuprofen has pharmacologic actions similar to those of other prototypical NSAIAs, which are thought to act through inhibition of prostaglandin synthesis. It’s used temporarily relieves minor aches and pains due to: headache; the common cold; muscular aches; backache; toothache; minor pain of arthritis; menstrual cramps and temporarily reduces fever. The exact mechanism of action of ibuprofen is unknown. Ibuprofen is a non-selective inhibitor of cyclooxygenase, an enzyme invovled in prostaglandin synthesis via the arachidonic acid pathway. Its pharmacological effects are believed to be due to inhibition cylooxygenase-2 (COX-2) which decreases the synthesis of prostaglandins involved in mediating inflammation, pain, fever and swelling. Antipyretic effects may be due to action on the hypothalamus, resulting in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation. Inhibition of COX-1 is thought to cause some of the side effects of ibuprofen including GI ulceration. Ibuprofen is administered as a racemic mixture. The R-enantiomer undergoes extensive interconversion to the S-enantiomer in vivo. The S-enantiomer is believed to be the more pharmacologically active enantiomer.
Status:
US Approved Rx
(2020)
Source:
NDA211733
(2020)
Source URL:
First approved in 1974
Source:
MOTRIN by MCNEIL CONSUMER
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Ibuprofen is a nonsteroidal anti-inflammatory agent (NSAIA) or nonsteroidal anti-inflammatory drug (NSAID), with analgesic and antipyretic properties. Ibuprofen has pharmacologic actions similar to those of other prototypical NSAIAs, which are thought to act through inhibition of prostaglandin synthesis. It’s used temporarily relieves minor aches and pains due to: headache; the common cold; muscular aches; backache; toothache; minor pain of arthritis; menstrual cramps and temporarily reduces fever. The exact mechanism of action of ibuprofen is unknown. Ibuprofen is a non-selective inhibitor of cyclooxygenase, an enzyme invovled in prostaglandin synthesis via the arachidonic acid pathway. Its pharmacological effects are believed to be due to inhibition cylooxygenase-2 (COX-2) which decreases the synthesis of prostaglandins involved in mediating inflammation, pain, fever and swelling. Antipyretic effects may be due to action on the hypothalamus, resulting in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation. Inhibition of COX-1 is thought to cause some of the side effects of ibuprofen including GI ulceration. Ibuprofen is administered as a racemic mixture. The R-enantiomer undergoes extensive interconversion to the S-enantiomer in vivo. The S-enantiomer is believed to be the more pharmacologically active enantiomer.