{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2023)
Source:
ANDA213267
(2023)
Source URL:
First approved in 1998
Source:
NDA020785
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Thalidomide is an immunomodulatory agent with a spectrum of activity that is not fully characterized. Thalidomide is racemic — it contains both left and right-handed isomers in equal amounts: one enantiomer is effective against morning sickness, and the other is teratogenic. The enantiomers are converted to each other in vivo. That is, if a human is given D-thalidomide or L-thalidomide, both isomers can be found in the serum. Hence, administering only one enantiomer will not prevent the teratogenic effect in humans. In patients with erythema nodosum leprosum (ENL) the mechanism of action is not fully understood. Available data from in vitro studies and preliminary clinical trials suggest that the immunologic effects of this compound can vary substantially under different conditions, but may be related to suppression of excessive tumor necrosis factor-alpha (TNF-a) production and down-modulation of selected cell surface adhesion molecules involved in leukocyte migration. For example, administration of thalidomide has been reported to decrease circulating levels of TNF-a in patients with ENL, however, it has also been shown to increase plasma TNF-a levels in HIV-seropositive patients. As a cancer treatment, the drug may act as a VEGF inhibitor. Thalidomide is used for the acute treatment of the cutaneous manifestations of moderate to severe erythema nodosum leprosum (ENL). Also for use as maintenance therapy for prevention and suppression of the cutaneous manifestations of ENL recurrence. Thalidomide is sold under the brand name Immunoprin, among others.
Status:
US Approved Rx
(2017)
Source:
ANDA209900
(2017)
Source URL:
First approved in 1989
Source:
TORADOL by ROCHE PALO
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Ketorolac is a pyrrolizine carboxylic acid derivative structurally related to indomethacin. It is an NSAID and is used principally for its analgesic activity and has been shown to decrease opioid requirements in post-operative patients. It does not affect consciousness or respiration but does have effects on gastric mucosa, renal perfusion, and platelet function. Ketorolac tromethamine ophthalmic solution is sold under brand name acular LS and is indicated for the reduction of ocular pain and burning/stinging following corneal refractive surgery. Ketorolac tromethamine is a racemic mixture of [-]S- and [ ]R-enantiomeric forms, with the S-form having analgesic activity. Its antiinflammatory effects are believed to be due to inhibition of both cylooxygenase-1 (COX-1) and cylooxygenase-2 (COX-2) which leads to the inhibition of prostaglandin synthesis leading to decreased formation of precursors of prostaglandins and thromboxanes from arachidonic acid. The resultant reduction in prostaglandin synthesis and activity may be at least partially responsible for many of the adverse, as well as the therapeutic, effects of these medication. Analgesia is probably produced via a peripheral action in which blockade of pain impulse generation results from decreased prostaglandin activity.
Status:
US Approved Rx
(1990)
Source:
NDA019715
(1990)
Source URL:
First approved in 1987
Source:
NDA019715
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Olsalazine is an anti-inflammatory drug used in the treatment of inflammatory bowel disease such as ulcerative colitis. Orally administered olsalazine is converted to mesalamine which is thought to be the therapeutically active agent in the treatment of ulcerative colitis. The mechanism of action of mesalamine (and sulfasalazine) is unknown but appears to be topical rather than systemic. Mucosal production of arachidonic acid (AA) metabolites, both through the cyclooxygenase pathways, i.e., prostanoids, and through the lipoxygenase pathways, i.e., leukotrienes (LTs) and hydroxyelcosatetraenoic acids (HETEs) is increased in patients with chronic inflammatory bowel disease, and it is possible that mesalamine diminishes inflammation by blocking cyclooxygenase and inhibiting prostaglandin (PG) production in the colon. After oral administration, olsalazine has limited systemic bioavailability. Based on oral and intravenous dosing studies, approximately 2.4% of a single 1.0 g oral dose is absorbed. Less than 1% of olsalazine is recovered in the urine. The remaining 98 to 99% of an oral dose will reach the colon, where each molecule is rapidly converted into two molecules of 5¬ aminosalicylic acid (5-ASA) by colonic bacteria and the low prevailing redox potential found in this environment. The liberated 5-ASA is absorbed slowly resulting in very high local concentrations in the colon. Olsalazine has been evaluated in ulcerative colitis patients in remission, as well as those with acute disease. Both sulfasalazine-tolerant and intolerant patients have been studied in controlled clinical trials. Overall, 10.4% of patients discontinued olsalazine because of an adverse experience compared with 6.7% of placebo patients. The most commonly reported adverse reactions leading to treatment withdrawal were diarrhea or loose stools (olsalazine 5.9%; placebo 4.8%), abdominal pain, and rash or itching (slightly more than 1% of patients receiving olsalazine).
Status:
US Approved Rx
(1995)
Source:
ANDA074431
(1995)
Source URL:
First approved in 1986
Source:
OCUFEN by ALLERGAN
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Flurbiprofen, a propionic acid derivative, is a nonsteroidal anti-inflammatory drug that exhibits antiinflammatory, analgesic, and antipyretic activities in animal models. Flurbiprofen Tablets are indicated for relief of the signs and symptoms of rheumatoid arthritis and for relief of the signs and symptoms of osteoarthritis. It may also be used to treat pain associated with dysmenorrhea and mild to moderate pain accompanied by inflammation (e.g. bursitis, tendonitis, soft tissue trauma). Flurbiprofen may also be used topically prior to ocular surgery to prevent or reduce intraoperative miosis. Similar to other NSAIAs, the anti-inflammatory effect of flurbiprofen occurs via reversible inhibition of cyclooxygenase (COX), the enzyme responsible for the conversion of arachidonic acid to prostaglandin G2 (PGG2) and PGG2 to prostaglandin H2 (PGH2) in the prostaglandin synthesis pathway. This effectively decreases the concentration of prostaglandins involved in inflammation, pain, swelling and fever. Flurbiprofen is a non-selective COX inhibitor and inhibits the activity of both COX-1 and -2. It is also one of the most potent NSAIAs in terms of prostaglandin inhibitory activity.
Status:
US Approved Rx
(1986)
Source:
ANDA071081
(1986)
Source URL:
First approved in 1980
Source:
MECLOMEN by PARKE DAVIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Meclofenamic acid, used as Meclofenamate sodium, is a non-steroidal anti-inflammatory agent with antipyretic and antigranulation activities. Meclofenamate sodium capsules are indicated for the relief of mild to moderate pain, for the treatment of primary dysmenorrhea and for the treatment of idiopathic heavy menstrual blood loss; for relief of signs and symptoms of juvenile arthritis; so as for relief of the signs and symptoms of rheumatoid arthritis; For relief of the signs and symptoms of osteoarthritis. The mode of action, like that of other nonsteroidal anti-inflammatory agents, is not known. Therapeutic action does not result from pituitary-adrenal stimulation. In animal studies, meclofenamate sodium was found to inhibit prostaglandin synthesis and to compete for binding at the prostaglandin receptor site. In vitro, meclofenamate sodium was found to be an inhibitor of human leukocyte 5-lipoxygenase activity. These properties may be responsible for the anti-inflammatory action of meclofenamate sodium. There is no evidence that meclofenamate sodium alters the course of the underlying disease.
Status:
US Approved Rx
(1991)
Source:
ANDA072711
(1991)
Source URL:
First approved in 1978
Source:
CLINORIL by MERCK
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Sulindac is a nonsteroidal anti-inflammatory agent (NSAIA) of the arylalkanoic acid class that is marketed in the U.S. by Merck as Clinoril. Like other NSAIAs, it may be used in the treatment of acute or chronic inflammatory conditions. Sulindac is a prodrug, derived from sulfinylindene, that is converted in vivo to an active sulfide compound by liver enzymes. The sulfide metabolite then undergoes enterohepatic circulation; it is excreted in the bile and then reabsorbed from the intestine. This is thought to help maintain constant blood levels with reduced gastrointestinal side effects. Some studies have shown sulindac to be relatively less irritating to the stomach than other NSAIA's except for drugs of the cyclooxygenase-2 (COX-2) inhibitor class. The exact mechanism of its NSAIA properties is unknown, but it is thought to act on enzymes COX-1 and COX-2, inhibiting prostaglandin synthesis.
Status:
US Approved Rx
(1994)
Source:
ANDA074473
(1994)
Source URL:
First approved in 1976
Source:
TOLECTIN by ORTHO MCNEIL JANSSEN
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Tolmetin is a nonsteroidal anti-inflammatory agent. It was marketed as Tolectin in USA. TOLECTIN (tolmetin sodium) is indicated for the relief of signs and symptoms of
rheumatoid arthritis and osteoarthritis. TOLECTIN is indicated in the treatment of
acute flares and the long-term management of the chronic disease.
TOLECTIN is also indicated for treatment of juvenile rheumatoid arthritis. The mode of action of tolmetin is not known. However, studies in laboratory animals and man have demonstrated that the anti-inflammatory action of tolmetin is not due to pituitary-adrenal stimulation. Tolmetin inhibits prostaglandin synthetase in vitro and lowers the plasma level of prostaglandin E in man. This reduction in prostaglandin synthesis may be responsible for the anti-inflammatory action.
Status:
US Approved Rx
(2020)
Source:
NDA211733
(2020)
Source URL:
First approved in 1974
Source:
MOTRIN by MCNEIL CONSUMER
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Ibuprofen is a nonsteroidal anti-inflammatory agent (NSAIA) or nonsteroidal anti-inflammatory drug (NSAID), with analgesic and antipyretic properties. Ibuprofen has pharmacologic actions similar to those of other prototypical NSAIAs, which are thought to act through inhibition of prostaglandin synthesis. It’s used temporarily relieves minor aches and pains due to: headache; the common cold; muscular aches; backache; toothache; minor pain of arthritis; menstrual cramps and temporarily reduces fever. The exact mechanism of action of ibuprofen is unknown. Ibuprofen is a non-selective inhibitor of cyclooxygenase, an enzyme invovled in prostaglandin synthesis via the arachidonic acid pathway. Its pharmacological effects are believed to be due to inhibition cylooxygenase-2 (COX-2) which decreases the synthesis of prostaglandins involved in mediating inflammation, pain, fever and swelling. Antipyretic effects may be due to action on the hypothalamus, resulting in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation. Inhibition of COX-1 is thought to cause some of the side effects of ibuprofen including GI ulceration. Ibuprofen is administered as a racemic mixture. The R-enantiomer undergoes extensive interconversion to the S-enantiomer in vivo. The S-enantiomer is believed to be the more pharmacologically active enantiomer.
Status:
US Approved Rx
(2018)
Source:
ANDA207035
(2018)
Source URL:
First approved in 1950
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Acetaminophen, also known as paracetamol, is commonly used for its analgesic and antipyretic effects. Its therapeutic effects are similar to salicylates, but it lacks anti-inflammatory, antiplatelet, and gastric ulcerative effects. Acetaminophen (USAN) or Paracetamol (INN) is a widely used analgesic and antipyretic drug that is used for the relief of fever, headaches, and other minor aches and pains. It is a major ingredient in numerous cold and flu medications and many prescription analgesics. It is extremely safe in standard doses, but because of its wide availability, deliberate or accidental overdoses are not uncommon. Acetaminophen, unlike other common analgesics such as aspirin and ibuprofen, has no anti-inflammatory properties or effects on platelet function, and it is not a member of the class of drugs known as non-steroidal anti-inflammatory drugs or NSAIDs. At therapeutic doses, acetaminophen does not irritate the lining of the stomach nor affect blood coagulation, kidney function, or the fetal ductus arteriosus (as NSAIDs can). Acetaminophen is thought to act primarily in the CNS, increasing the pain threshold by inhibiting both isoforms of cyclooxygenase, COX-1, COX-2, and COX-3 enzymes involved in prostaglandin (PG) synthesis. Unlike NSAIDs, acetaminophen does not inhibit cyclooxygenase in peripheral tissues and, thus, has no peripheral anti-inflammatory affects. Acetaminophen indirectly blocks COX, and that this blockade is ineffective in the presence of peroxides. This might explain why acetaminophen is effective in the central nervous system and in endothelial cells but not in platelets and immune cells, which have high levels of peroxides. Studies also report data suggesting that acetaminophen selectively blocks a variant of the COX enzyme that is different from the known variants COX-1 and COX-2. This enzyme is now referred to as COX-3. Its exact mechanism of action is still poorly understood, but future research may provide further insight into how it works. The antipyretic properties of acetaminophen are likely due to direct effects on the heat-regulating centers of the hypothalamus resulting in peripheral vasodilation, sweating and hence heat dissipation.
Class (Stereo):
CHEMICAL (RACEMIC)
An oxazole compound, tioxaprofen, exerted a strong anti-mycotic activity against Trichophyton mentagrophytes and T. rubrum, which were major dermatophytes from patients. It was found that tioxaprofen was a potent uncoupling agent of mitochondrial respiration. Tioxaprofen inhibits the electron transport between cytochromes b and c1 in the mitochondrial respiratory chain. Tioxaprofen blocks the formation of thromboxane most probably by inhibition of cyclo-oxygenase.