U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Nebivolol is a competitive and highly selective beta-1 receptor antagonist with mild vasodilating properties, possibly due to an interaction with the L-arginine/nitric oxide pathway. In preclinical studies, nebivolol has been shown to induce endothelium-dependent arterial relaxation in a dose dependent manner, by stimulation of the release of endothelial nitric oxide. Nitric oxide acts to relax vascular smooth muscle cells and inhibits platelet aggregation and adhesion. Activation of β1-receptors by epinephrine increases the heart rate and the blood pressure, and the heart consumes more oxygen. Nebivolol blocks these receptors which reverses the effects of epinephrine, lowering the heart rate and blood pressure. In addition, beta blockers prevent the release of renin, which is a hormone produced by the kidneys which leads to constriction of blood vessels. At high enough concentrations, this drug may also bind beta 2 receptors. Marketed under the brand name BYSTOLIC, Nebivolol is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions.
Sotalol has both beta-adrenoreceptor blocking and cardiac action potential duration prolongation antiarrhythmic properties. Sotalol inhibits response to adrenergic stimuli by competitively blocking β1-adrenergic receptors within the myocardium and β2-adrenergic receptors within bronchial and vascular smooth muscle. It is FDA approved for the treatment of ventricular arrhythmias, symptomatic atrial fibtillation, symptomatic atriall flutter. Common adverse reactions include bradyarrhythmia, chest pain, lightheadedness, palpitations, rash, nausea, dizziness, headache, dyspnea, fatigue. Proarrhythmic events were more common in sotalol treated patients also receiving digoxin. Sotalol should be administered with caution in conjunction with calcium blocking drugs because of possible additive effects on atrioventricular conduction or ventricular function. Patients treated with sotalol plus a catecholamine depletor should therefore be closely monitored for evidence of hypotension and/or marked bradycardia which may produce syncope.
Bisoprolol is a cardioselective beta1-adrenergic blocking agent. It lower the heart rate and blood pressure and may be used to reduce workload on the heart and hence oxygen demands. This results in a reduction of heart rate, cardiac output, systolic and diastolic blood pressure, and possibly reflex orthostatic hypotension. Bisoprolol can be used to treat cardiovascular diseases such as hypertension, coronary heart disease, arrhythmias, ischemic heart diseases, and myocardial infarction after the acute event. General side effects are: fatigue, asthenia, chest pain, malaise, edema, weight gain, angioedema. Concurrent use of rifampin increases the metabolic clearance of bisoprolol fumarate, shortening its elimination half-life.
Carteolol is a nonselective beta-adrenoceptor blocking agent for ophthalmic use. It has been shown to be effective in lowering intraocular pressure and may be used in patients with chronic open-angle glaucoma and intraocular hypertension. It may be used alone or in combination with other intraocular pressure lowering medications. The following adverse reactions have been reported: transient eye irritation, burning, tearing, conjunctival hyperemia and edema. Carteolol may cause bradycardia and decreased blood pressure, headache, arrhythmia, syncope, heart block, cerebral vascular accident, cerebral ischemia, congestive heart failure, palpitation, nausea, depression. Carteolol should be used with caution in patients who are receiving a beta-adrenergic blocking agent orally, because of the potential for additive effects on systemic beta-blockade.
Esmolol (trade name Brevibloc) is a cardioselective beta1 receptor blocker with rapid onset, a very short duration of action, and no significant intrinsic sympathomimetic or membrane stabilizing activity at therapeutic dosages. Esmolol decreases the force and rate of heart contractions by blocking beta-adrenergic receptors of the sympathetic nervous system, which are found in the heart and other organs of the body. Esmolol prevents the action of two naturally occurring substances: epinephrine and norepinephrine. Esmolol predominantly blocks the beta-1 receptors in cardiac tissue. Used for the rapid control of ventricular rate in patients with atrial fibrillation or atrial flutter in perioperative, postoperative, or other emergent circumstances where short term control of ventricular rate with a short-acting agent is desirable. Also used in noncompensatory sinus tachycardia where the rapid heart rate requires specific intervention.
Levobunolol is a non-cardioselective beta-adrenoceptor blocking agent, equipotent at both beta1 and beta2 adrenergic receptors. Levobunolol is greater than 60 times more potent than its dextro isomer in its beta-blocking activity, yet equipotent in its potential for direct myocardial depression. Accordingly, the levo isomer, levobunolol, is used. Levobunolol does not have significant local anesthetic (membrane-stabilizing) or intrinsic sympathomimetic activity. Levobunolol, sold under the brand name Betagan, has been shown to be an active agent in lowering elevated as well as normal intraocular pressure (IOP) whether or not accompanied by glaucoma. Levobunolol is contraindicated in those individuals with bronchial asthma or with a history of bronchial asthma, or severe chronic obstructive pulmonary disease sinus bradycardia; second and third-degree atrioventricular block; overt cardiac failure cardiogenic shock; or hypersensitivity to any component of these products.
Betaxolol or SL 75212, (± )-1-(isopropylamino)-3-(p-(cyclopropylmethoxyethyl-phenoxy)2-propranol, is a potent cardioselective beta1-adrenoceptor antagonist devoid of intrinsic sympathomimetic activity with very weak local anaesthetic properties. Oral betaxolol has been used for the treatment of essential hypertension. Betaxolol is used topically in glaucoma and ocular hypertension.
Status:
First approved in 1984

Class (Stereo):
CHEMICAL (RACEMIC)



Acebutolol is a cardioselective, beta-adrenoreceptor blocking agent, which possesses mild intrinsic sympathomimetic activity (ISA) in its therapeutically effective dose range. Acebutolol is marketed under the trade names Sectral, Prent. Acebutolol is indicated for the management of hypertension in adults. It may be used alone or in combination with other antihypertensive agents, especially thiazide-type diuretics. Acebutolol is also indicated in the management of ventricular premature beats; it reduces the total number of premature beats, as well as the number of paired and multiform ventricular ectopic beats, and R-on-T beats. Acebutolol is a selective β1-receptor antagonist. Activation of β1-receptors by epinephrine increases the heart rate and the blood pressure, and the heart consumes more oxygen. Acebutolol blocks these receptors, lowering the heart rate and blood pressure. This drug then has the reverse effect of epinephrine. In addition, beta blockers prevent the release of renin, which is a hormone produced by the kidneys which leads to constriction of blood vessels.
Atenolol is a Beta-1 cardio-selective adreno-receptor blocking agent discovered and developed by ICI in 1976. Atenolol was launched in the market under the trade name Tenormin in 1976, and became the best-selling Beta-blocker in the world in the 1980s and 1990s. TENORMIN is indicated for the treatment of hypertension, to lower blood pressure; also for the long-term management of patients with angina pectoris and also is indicated in the management of hemodynamically stable patients with definite or suspected acute myocardial infarction to reduce cardiovascular mortality. Like metoprolol, atenolol competes with sympathomimetic neurotransmitters such as catecholamines for binding at beta(1)-adrenergic receptors in the heart and vascular smooth muscle, inhibiting sympathetic stimulation. This results in a reduction in resting heart rate, cardiac output, systolic and diastolic blood pressure, and reflex orthostatic hypotension. Higher doses of atenolol also competitively block beta(2)-adrenergic responses in the bronchial and vascular smooth muscles. Hypotensive mechanism of atenolol is very complex. Decrease in CO and inhibition of renin-angiotensin-aldosterone system may mainly be responsible for hypotension. It is likely that potassium retaining action of atenolol partly contributes to its hypotensive action. It is also hypothetized that renal kallikrein-kinin system may play a role in modulating the hypotensive action of atenolol.
Nadolol is a nonselective beta-adrenergic receptor antagonist with a long half-life, and is structurally similar to propranolol. Clinical pharmacology studies have demonstrated beta-blocking activity by showing (1) reduction in heart rate and cardiac output at rest and on exercise, (2) reduction of systolic and diastolic blood pressure at rest and on exercise, (3) inhibition of isoproterenol-induced tachycardia, and (4) reduction of reflex orthostatic tachycardia. Nadolol has no intrinsic sympathomimetic activity and, unlike some other beta-adrenergic blocking agents, nadolol has little direct myocardial depressant activity and does not have an anesthetic-like membrane-stabilizing action. Like other beta-adrenergic antagonists, nadolol competes with adrenergic neurotransmitters such as catecholamines for binding at sympathetic receptor sites. Like propranolol and timolol, nadolol binds at beta(1)-adrenergic receptors in the heart and vascular smooth muscle, inhibiting the effects of the catecholamines epinephrine and norepinephrine and decreasing heart rate, cardiac output, and systolic and diastolic blood pressure. It also blocks beta-2 adrenergic receptors located in bronchiole smooth muscle, causing vasoconstriction. By binding beta-2 receptors in the juxtaglomerular apparatus, nadolol inhibits the production of renin, thereby inhibiting angiotensin II and aldosterone production. Nadolol therefore inhibits the vasoconstriction and water retention due to angiotensin II and aldosterone, respectively. Nadolol is used in cardiovascular disease to treat arrhythmias, angina pectoris, and hypertension.