{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Investigational
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
ICI-118551 is a selective β2 adrenergic receptor antagonist, that was originally developed for the regulation of blood pressure. ICI-118551 crosses the blood-brain barrier and it was in phase I clinical trials for the treatment of chronic anxiety. Currently, ICI-118,551 has no known therapeutic use in humans although it has been used widely in research to understand the action of the β2 adrenergic receptor, as few other specific antagonists for this receptor are known.
Status:
Other
Class (Stereo):
CHEMICAL (RACEMIC)
Status:
Other
Class (Stereo):
CHEMICAL (RACEMIC)
Status:
Other
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
(+)-octopamine is an enantiomer of octopamine, a naturally occurring phenolamine acting as a neurotransmitter in invertebrates. Octopamine is considered to be trace amine present in mammalian tissues at very low (nanomolar) concentrations. Generally, the (+)-enantiomers of octopamine are less active than the (-)-enantiomers at adrenergic receptors. However (+)-octopamine is more potent than the (-)-octopamine as an inhibitor of semicarbazide-sensitive amine oxidase.
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
(-)-octopamine is an enantiomer of octopamine, a naturally occurring phenolamine acting as a neurotransmitter in invertebrates. Octopamine is considered to be trace amine present in mammalian tissues at very low (nanomolar) concentrations. Generally, the (-)-enantiomers of octopamine are more active than the (+)-enantiomers at adrenergic receptors. However (+)-octopamine is more potent than the (-)-octopamine as an inhibitor of semicarbazide-sensitive amine oxidase.
Status:
Other
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
BRL-44408, a potent (Ki=8.5 nM) and selective (>50-fold) α2A-adrenoceptor antagonist (KB=7.9 nM). BRL-44408 revealed antidepressant- and analgesic-like activity through selective alpha2A-adrenoceptor antagonism. Preclinical characterization of the neurochemical and behavioural profile of BRL-44408 suggests that selective antagonism of alpha2A-adrenoceptors may represent an effective treatment strategy for mood disorders and visceral pain. BRL-44408 increases hippocampal noradrenalin release following systemic administration. BRL-44408 has potential therapeutic application in the treatment of extrapyramidal side effects produced by some antipsychotic medications.
Status:
Other
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Status:
US Previously Marketed
Source:
DIPIVEFRIN HYDROCHLORIDE by FALCON PHARMS
(1994)
Source URL:
First approved in 1980
Source:
PROPINE by ALLERGAN
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Dipivefrin is a prodrug with little or no pharmacologically activity until it is hydrolyzed into epinephrine inside the human eye. The liberated epinephrine, an adrenergic agonist, appears to exert its action by stimulating α -and/or β2-adrenergic receptors, leading to a decrease in aqueous production and an enhancement of outflow facility. The dipivefrin prodrug delivery system is a more efficient way of delivering the therapeutic effects of epinephrine, with fewer side effects than are associated with conventional epinephrine therapy. Dipivefrin is used as initial therapy for the control of intraocular pressure in chronic open-angle glaucoma.
Status:
First approved in 1948
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Isometheptene (usually as isometheptene mucate) is a sympathomimetic amine sometimes used in the treatment of migraines and tension headaches due to its vasoconstricting properties. Isometheptene's vasoconstricting properties arise through activation of the sympathetic nervous system via epinephrine and norepinephrine. These compounds elicit smooth muscle activation leading to vasoconstriction by interacting with cell surface adrenergic receptors.