U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 7731 - 7740 of 8504 results

Status:
US Previously Marketed
First marketed in 1914

Class (Stereo):
CHEMICAL (ABSOLUTE)



Emetine is a principal alkaloid of ipecac, isolated from the ground roots of Uragoga ipecacuanha. Early use of emetine was in the form of oral administration of the extract of ipecac root, or ipecacuanha. This extract contains several, including cephaeline, and others. The identification of emetine as a more potent agent improved the treatment of amoebiasis. While the use of emetine still caused nausea, it was more effective than the crude extract of ipecac root. Additionally, emetine could be administered hypodermically which still produced nausea, but not to the degree experienced in oral administration. Emetine dihydrochloride hydrate is used in the laboratory to block protein synthesis in eukaryotic cells. It does this by binding to the 40S subunit of the ribosome. Emetine induces hypotension by blocking adrenoreceptors. Also, emetine was identified as a specific inhibitor of HIF-2α protein stability and transcriptional activity. Heavy or over usage of emetine can carry the risk of developing proximal myopathy and/or cardiomyopathy.
Status:
US Previously Marketed
Source:
Chloretone by Parke-Davis
(1911)
Source URL:
First marketed in 1911
Source:
Chloretone by Parke-Davis
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Chlorobutanol, or trichloro-2-methyl-2-propanol, is an analgesic and sedative hypnotic in man, and an experimental general anesthetic. It has antibacterial and antifungal properties. It is also used chemical preservative for parenteral drugs. It was found, that chlorobutanol inhibited mammalian Nav 1.2 channels at concentrations less than those used to preserve parenteral solutions. Its mechanism of inhibiting Na channels differs from that of local anesthetics in that it does not show use dependent or state dependent inhibition.
Amylocaine (trade name Stovaine) is a local anesthetic, that was widely used for spinal anesthesia in Caesarean section. The dose used would produce anesthesia for up to 1 h. Reports of the use of spinal analgesia for abdominal and perineal surgery in infants are found from several centers during the first half of the twentieth century. However, this agent often fails to provide good maternal sensory block and currently, Amylocaine has been replaced with new anesthetics.
Phenacaine (UNII: V3M4D317W8) also known as holocaine is a local anesthetic used in ophthalmic medicine. Like other local anesthetics it inhibits the specific calmodulin-dependent stimulation of erythrocyte Ca2+-ATPase (ATP phosphohydrolase) and cyclic nucleotide phosphodiesterases (3',5'-cyclic-nucleotide 5'-nucleotidohydrolase) from brain and heart. Basal activities of these enzymes in the absence of calmodulin are relatively unaffected by concentrations of local anesthetics that strongly inhibit the specific stimulation by calmodulin. Increasing calmodulin, but not Ca2+, overcomes the inhibitory action of the local anesthetics on brain phosphodiesterase. However, excess calmodulin does not fully restore activity of erythrocyte CA2+-stimulated ATPase. Although the mechanism(s) by which the local anesthetics act is unclear, they inhibit binding of 125I-labeled calmodulin to the erythrocyte membrane. Antagonism of calmodulin provides a molecular mechanism that may explain the inhibition of many Ca2+-dependent cellular processes by local anesthetics--e.g., Ca2+ transport, exocytosis, excitation-contraction coupling, non-muscle-cell motility, and aggregation. Phenacaine hydrochloride is registered by FDA as an anorectal drug product and is in the list of OTC active ingredients. The Ointment Ophthalmic Holocaine and Epinephrine (1.5% phenacaine hydrochloride) were distributed by National Drug Co., a corporation, Philadelphia, Pa. and in 1939 and was alleged to be misbranded since it contained less phenacaine hydrochloride than indicated by the labeling.
Phenacaine (UNII: V3M4D317W8) also known as holocaine is a local anesthetic used in ophthalmic medicine. Like other local anesthetics it inhibits the specific calmodulin-dependent stimulation of erythrocyte Ca2+-ATPase (ATP phosphohydrolase) and cyclic nucleotide phosphodiesterases (3',5'-cyclic-nucleotide 5'-nucleotidohydrolase) from brain and heart. Basal activities of these enzymes in the absence of calmodulin are relatively unaffected by concentrations of local anesthetics that strongly inhibit the specific stimulation by calmodulin. Increasing calmodulin, but not Ca2+, overcomes the inhibitory action of the local anesthetics on brain phosphodiesterase. However, excess calmodulin does not fully restore activity of erythrocyte CA2+-stimulated ATPase. Although the mechanism(s) by which the local anesthetics act is unclear, they inhibit binding of 125I-labeled calmodulin to the erythrocyte membrane. Antagonism of calmodulin provides a molecular mechanism that may explain the inhibition of many Ca2+-dependent cellular processes by local anesthetics--e.g., Ca2+ transport, exocytosis, excitation-contraction coupling, non-muscle-cell motility, and aggregation. Phenacaine hydrochloride is registered by FDA as an anorectal drug product and is in the list of OTC active ingredients. The Ointment Ophthalmic Holocaine and Epinephrine (1.5% phenacaine hydrochloride) were distributed by National Drug Co., a corporation, Philadelphia, Pa. and in 1939 and was alleged to be misbranded since it contained less phenacaine hydrochloride than indicated by the labeling.
Status:
US Previously Marketed
Source:
ALLONAL AMINOPHENAZONE by ROCHE
(1961)
Source URL:
First marketed in 1897
Source:
Pyramidon
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Aminophenazone is a phenyl-pyrazolone derivative with potent analgesic and antipyretic properties. Aminophenazone has been used as salt or complexes, including topically as the salicylate. It was recommended for the treatment of a fever, neuralgia, myositis, acute rheumatism, arthritis, chorea. In 1999 the FDA suspended aminophenazone. The drug caused agranulocytosis. Some of the cases of agranulocytosis were fatal. Another reason for suspending this drug from the market was its ability to react with nitrite-containing food, thus forming carcinogenic nitrosamines. A breath test with 13C-labeled aminopyrine has been used as a non-invasive measure of cytochrome P-450 metabolic activity in liver function tests.
Status:
US Previously Marketed
Source:
ALLONAL AMINOPHENAZONE by ROCHE
(1961)
Source URL:
First marketed in 1897
Source:
Pyramidon
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Aminophenazone is a phenyl-pyrazolone derivative with potent analgesic and antipyretic properties. Aminophenazone has been used as salt or complexes, including topically as the salicylate. It was recommended for the treatment of a fever, neuralgia, myositis, acute rheumatism, arthritis, chorea. In 1999 the FDA suspended aminophenazone. The drug caused agranulocytosis. Some of the cases of agranulocytosis were fatal. Another reason for suspending this drug from the market was its ability to react with nitrite-containing food, thus forming carcinogenic nitrosamines. A breath test with 13C-labeled aminopyrine has been used as a non-invasive measure of cytochrome P-450 metabolic activity in liver function tests.
Status:
US Previously Marketed
Source:
ALLONAL AMINOPHENAZONE by ROCHE
(1961)
Source URL:
First marketed in 1897
Source:
Pyramidon
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Aminophenazone is a phenyl-pyrazolone derivative with potent analgesic and antipyretic properties. Aminophenazone has been used as salt or complexes, including topically as the salicylate. It was recommended for the treatment of a fever, neuralgia, myositis, acute rheumatism, arthritis, chorea. In 1999 the FDA suspended aminophenazone. The drug caused agranulocytosis. Some of the cases of agranulocytosis were fatal. Another reason for suspending this drug from the market was its ability to react with nitrite-containing food, thus forming carcinogenic nitrosamines. A breath test with 13C-labeled aminopyrine has been used as a non-invasive measure of cytochrome P-450 metabolic activity in liver function tests.
Status:
US Previously Marketed
Source:
ALLONAL AMINOPHENAZONE by ROCHE
(1961)
Source URL:
First marketed in 1897
Source:
Pyramidon
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Aminophenazone is a phenyl-pyrazolone derivative with potent analgesic and antipyretic properties. Aminophenazone has been used as salt or complexes, including topically as the salicylate. It was recommended for the treatment of a fever, neuralgia, myositis, acute rheumatism, arthritis, chorea. In 1999 the FDA suspended aminophenazone. The drug caused agranulocytosis. Some of the cases of agranulocytosis were fatal. Another reason for suspending this drug from the market was its ability to react with nitrite-containing food, thus forming carcinogenic nitrosamines. A breath test with 13C-labeled aminopyrine has been used as a non-invasive measure of cytochrome P-450 metabolic activity in liver function tests.
Status:
US Previously Marketed
Source:
ALLONAL AMINOPHENAZONE by ROCHE
(1961)
Source URL:
First marketed in 1897
Source:
Pyramidon
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Aminophenazone is a phenyl-pyrazolone derivative with potent analgesic and antipyretic properties. Aminophenazone has been used as salt or complexes, including topically as the salicylate. It was recommended for the treatment of a fever, neuralgia, myositis, acute rheumatism, arthritis, chorea. In 1999 the FDA suspended aminophenazone. The drug caused agranulocytosis. Some of the cases of agranulocytosis were fatal. Another reason for suspending this drug from the market was its ability to react with nitrite-containing food, thus forming carcinogenic nitrosamines. A breath test with 13C-labeled aminopyrine has been used as a non-invasive measure of cytochrome P-450 metabolic activity in liver function tests.

Showing 7731 - 7740 of 8504 results