{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2013)
Source:
ANDA202051
(2013)
Source URL:
First approved in 2002
Source:
HEPSERA by GILEAD
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
The potential antiviral effect of adefovir, an acyclic nucleoside phosphonate analog of 2′-deoxyadenosine monophosphate, was first studied by Holý and De Clercq in 1980s.
Adefovir is an acyclic nucleotide analog of adenosine monophosphate which is phosphorylated to the active metabolite adefovir diphosphate by cellular kinases. Adefovir diphosphate inhibits HBV DNA polymerase (reverse transcriptase) by competing with the natural substrate deoxyadenosine triphosphate and by causing DNA chain termination after its incorporation into viral DNA. Oral adefovir dipivoxil is effective and generally well tolerated in HBeAg-positive and -negative patients chronically infected with wild-type or lamivudine-resistant HBV.
Status:
US Approved Rx
(2002)
Source:
NDA021411
(2002)
Source URL:
First approved in 2002
Source:
NDA021411
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Atomoxetine is indicated for the treatment of Attention-Deficit/Hyperactivity Disorder. The precise mechanism by which atomoxetine produces its therapeutic effects in Attention-Deficit/Hyperactivity Disorder (ADHD) is unknown, but is thought to be related to selective inhibition of the pre-synaptic norepinephrine transporter. Most common adverse reactions are: nausea, vomiting, fatigue, decreased appetite, abdominal pain, and somnolence, constipation, dry mouth, dizziness, erectile dysfunction, and urinary hesitation. Atomoxetine is a substrate for CYP2D6 and hence concurrent treatment with CYP2D6 inhibitors such as bupropion (Wellbutrin) or fluoxetine (Prozac) is not recommended, as this can lead to significant elevations of plasma atomoxetine levels.
Status:
US Approved Rx
(2022)
Source:
ANDA210859
(2022)
Source URL:
First approved in 2002
Source:
NDA021445
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ezetimibe is an anti-hyperlipidemic medication which is used to lower cholesterol levels. Specifically, it appears to bind to a critical mediator of cholesterol absorption, the Niemann-Pick C1-Like 1 (NPC1L1) protein on the gastrointestinal tract epithelial cells as well as in hepatocytes. Ezetimibe is in a class of lipid-lowering compounds that selectively inhibits the intestinal absorption of cholesterol and related phytosterols. Ezetimibe, administered alone is indicated as adjunctive therapy to diet for the reduction of elevated total-C, LDL-C, and Apo B in patients with primary (heterozygous familial and non-familial) hypercholesterolemia. It is also used in combination therapy with HMG-CoA reductase inhibitors. Ezetimibe has a mechanism of action that differs from those of other classes of cholesterol-reducing compounds (HMG-CoA reductase inhibitors, bile acid sequestrants, fibric acid derivatives, and plant stanols). Ezetimibe does not inhibit cholesterol synthesis in the liver, or increase bile acid excretion but instead localizes and appears to act at the brush border of the small intestine and inhibits the absorption of cholesterol, leading to a decrease in the delivery of intestinal cholesterol to the liver. This causes a reduction of hepatic cholesterol stores and an increase in clearance of cholesterol from the blood; this distinct mechanism is complementary to that of HMG-CoA reductase inhibitors.
Status:
US Approved Rx
(2016)
Source:
ANDA206747
(2016)
Source URL:
First approved in 2002
Source:
NDA021267
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Voriconazole (vor-i-KON-a-zole, brand name Vfend, Pfizer) is a triazole antifungal medication. VFEND® (voriconazole) is available as film-coated tablets for oral administration, and as a lyophilized powder for solution for intravenous infusion. Voriconazole is a triazole antifungal agent indicated for use in the treatment of fungal infections including invasive aspergillosis, esophageal candidiasis, and serious fungal infections caused by Scedosporium apiospermum (asexual form of Pseudallescheria boydii) and Fusarium spp. including Fusarium solani. Fungal plasma membranes are similar to mammalian plasma membranes, differing in having the nonpolar sterol ergosterol, rather than cholesterol, as the principal sterol. Membrane sterols such as ergosterol provide structure, modulation of membrane fluidity, and possibly control of some physiologic events. Voriconazole effects the formation of the fungal plasma membrane by indirectly inhibiting the biosynthesis of ergosterol. This results in plasma membrane permeability changes and inhibition of growth. The primary mode of action of voriconazole is the inhibition of fungal cytochrome P-450-mediated 14 alpha-lanosterol demethylation, an essential step in fungal ergosterol biosynthesis. The accumulation of 14 alpha-methyl sterols correlates with the subsequent loss of ergosterol in the fungal cell wall and may be responsible for the antifungal activity of voriconazole. Voriconazole has been shown to be more selective for fungal cytochrome P-450 enzymes than for various mammalian cytochrome P-450 enzyme systems. The most common side effects associated with voriconazole include transient visual disturbances, fever, rash, vomiting, nausea, diarrhea, headache, sepsis, peripheral edema, abdominal pain, and respiratory disorder. Unlike most adverse effects, which are similar to other azole antifungal agents, visual disturbances (such as blurred vision or increased sensitivity to light) are unique to voriconazole. Though rare, there have been cases of serious hepatic reactions during treatment with voriconazole (a class effect of azole antifungal agents). Liver function tests should be evaluated at the start of and during the course of therapy. Voriconazole is phototoxic. It has been associated with an increased risk of squamous-cell carcinoma of the skin
Status:
US Approved Rx
(2019)
Source:
ANDA205935
(2019)
Source URL:
First approved in 2002
Source:
NDA021344
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
Fulvestrant is a drug treatment of hormone receptor-positive metastatic breast cancer in post-menopausal women with disease progression following anti-estrogen therapy. It is an estrogen receptor antagonist with no agonist effects, which works both by down-regulating and by degrading the estrogen receptor. Fulvestrant competitively and reversibly binds to estrogen receptors present in cancer cells and achieves its anti-estrogen effects through two separate mechanisms. First, fulvestrant binds to the receptors and downregulates them so that estrogen is no longer able to bind to these receptors. Second, fulvestrant degrades the estrogen receptors to which it is bound. Both of these mechanisms inhibit the growth of tamoxifen-resistant as well as estrogen-sensitive human breast cancer cell lines. Fulvestrant is used for the treatment of hormone receptor positive metastatic breast cancer in postmenopausal women with disease progression following anti-estrogen therapy. Fulvestrant is marketed under the trade name Faslodex, by AstraZeneca.
Status:
US Approved Rx
(2002)
Source:
NDA021498
(2002)
Source URL:
First approved in 2002
Source:
NDA021498
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Tizoxanide, the primary active metabolite of the FDA approved drug nitazoxanide, an anti-infective that has been approved for the treatment of diarrhea caused by Giardia lamblia. Tizoxanide, an active metabolite of nitazoxanide in humans, is also an antiparasitic drug of the thiazolide class. It has broad-spectrum antiparasitic and broad-spectrum antiviral properties. Besides, it has being found that Tizoxanide exhibits appreciable antagonist activity for both mGluR1 and mGluR5 (IC50 = 1.8 uM and 1.2 uM, respectively).
Status:
US Approved Rx
(2002)
Source:
NDA021232
(2002)
Source URL:
First approved in 2002
Source:
NDA021232
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Nitisinone, 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) is a triketone with herbicidal activity. Orfadin® capsules contain nitisinone used in the treatment of hereditary tyrosinemia type 1 (HT-1). Nitisinone is a competitive inhibitor of 4-hydroxyphenyl-pyruvate dioxygenase, an enzyme
upstream of fumarylacetoacetase in the tyrosine catabolic pathway. By inhibiting the normal
catabolism of tyrosine in patients with HT-1, nitisinone prevents the accumulation of the
catabolic intermediates maleylacetoacetate and fumarylacetoacetate. In patients with HT-1,
these catabolic intermediates are converted to the toxic metabolites succinylacetone and
succinylacetoacetate, which are responsible for the observed liver and kidney toxicity.
Succinylacetone can also inhibit the porphyrin synthesis pathway leading to the accumulation
of 5-aminolevulinate, a neurotoxin responsible for the porphyric crises characteristic of HT-1. Zeneca Agrochemicals and Zeneca Pharmaceuticals made NTBC available for clinical use and, with the approval of the Swedish Medical Products Agency, a seriously ill child with an acute form of tyrosinaemia type 1 was successfully treated in February 1991.
Nitisinone is investigated as a potential treatment for other disorders of tyrosine metabolism including alkaptonuria.
Status:
US Approved Rx
(2002)
Source:
NDA021323
(2002)
Source URL:
First approved in 2002
Source:
NDA021323
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Escitalopram is one of a class of antidepressants known as selective serotonin reuptake inhibitors (SSRIs). Escitalopram, also known by the brand names Lexapro and Cipralex among others, is an antidepressant. The mechanism of antidepressant action of escitalopram, the S-enantiomer of racemic citalopram, is presumed to
be linked to potentiation of serotonergic activity in the central nervous system (CNS) resulting from its inhibition
of CNS neuronal reuptake of serotonin (5-HT). In vitro and in vivo studies in animals suggest that escitalopram is
a highly selective serotonin reuptake inhibitor (SSRI) with minimal effects on norepinephrine and dopamine
neuronal reuptake. Escitalopram is at least 100-fold more potent than the R-enantiomer with respect to inhibition
of 5-HT reuptake and inhibition of 5-HT neuronal firing rate. LEXAPRO (escitalopram) is indicated for the treatment of major depressive disorder and generalized anxiety disorder .
Status:
US Approved Rx
(2022)
Source:
ANDA211699
(2022)
Source URL:
First approved in 2001
Source:
FORADIL by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Formoterol is a long-acting selective beta2-adrenergic receptor agonist (beta2-agonist). Inhaled formoterol fumarate acts locally in the lung as a bronchodilator. In vitro studies have shown that formoterol has more than 200-fold greater agonist activity at beta2-receptors than at beta1- receptors. Although beta2-receptors are the predominant adrenergic receptors in bronchial smooth muscle and beta1-receptors are the predominant receptors in the heart, there are also beta2-receptors in the human heart comprising 10%-50% of the total beta-adrenergic receptors. The precise function of these receptors has not been established, but they raise the possibility that even highly selective beta2- agonists may have cardiac effects. The pharmacologic effects of beta2-adrenoceptor agonist drugs, including formoterol, are at least in part attributable to stimulation of intracellular adenyl cyclase, the enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-3', 5'-adenosine monophosphate (cyclic AMP). Increased cyclic AMP levels cause relaxation of bronchial smooth muscle and inhibits the release of pro-inflammatory mast-cell mediators such as histamine and leukotrienes. Formoterol also inhibits histamine-induced plasma albumin extravasation in anesthetized guinea pigs and inhibits allergen-induced eosinophil influx in dogs with airway hyper-responsiveness. The relevance of these in vitro and animal findings to humans is unknown. Formoterol is used for use as long-term maintenance treatment of asthma in patients 6 years of age and older with reversible obstructive airways disease, including patients with symptoms of nocturnal asthma, who are using optimal corticosteroid treatment and experiencing regular or frequent breakthrough symptoms requiring use of a short-acting bronchodilator. Not indicated for asthma that can be successfully managed with occasional use of an inhaled, short-acting beta2-adrenergic agonist. Also used for the prevention of exercise-induced bronchospasm, as well as long-term treatment of bronchospasm associated with COPD. Marketed as Foradil Aerolizer.
Status:
US Approved Rx
(2016)
Source:
NDA206110
(2016)
Source URL:
First approved in 2001
Source:
NDA021227
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Caspofungin is an echinocandin antifungal drug, which is approved and is sold under the brand worldwide name cancidas. Caspofungin inhibits the synthesis of beta (1,3)-D-glucan, an essential component of the cell wall of susceptible Aspergillus species and Candida species. Beta (1,3)-D-glucan is not present in mammalian cells. Cancidas is indicated for the treatment of candidemia and the following candida infections: intra-abdominal abscesses, peritonitis, and pleural space infections in adult and pediatric patients. Also is indicated for the treatment of esophageal candidiasis in adult and pediatric patients and for the treatment of invasive aspergillosis in adult and pediatric patients, but has not been studied as initial therapy for invasive aspergillosis.