U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 881 - 890 of 1076 results

Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)



Cyanidin is a natural anthocyanidin present in fruits and vegetables, attenuates the development of several diseases, including asthma, diabetes, atherosclerosis, and cancer, through its anti-inflammatory effects. Its mechanism of action is still undefined, but it was revealed that cyanidin specifically recognizes an IL-17A binding site in the IL-17A receptor subunit (IL-17RA) and inhibits the IL-17A/IL-17RA interaction and thus can be used as a drug for the treatment of IL-17A-dependent inflammatory diseases and cancer. In addition, cyanidin was capable of inhibiting osteoclast formation and thus might have therapeutic potential for osteolytic diseases.
Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Bisbenzimide ethoxide is a fluorescent nucleic acid stain useful for DNA labeling in fluorescence microscopy and flow cytometry. It appears to bind to AT-rich regions containing at least four such basepairs. Bisbenzimide ethoxide seems to bind relatively poorly to nucleotide sequences containing the alternating step TpA. Bisbenzimide ethoxide induced apoptosis in the HL-60 cells in a time- and dose-dependent manner. Endogenous nuclear topoisomerase I activity in HL-60 cells was inhibited by treatment with Bisbenzimide ethoxide.
Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Epiquinidine is an alkaloid derived from the bark of the cinchona tree. The most abundant constituents of the Cinchona barks are two pairs of erythro diastereoisomers: quinineand quinidine, which are active antimalarials. Their threo epimers, epiquinine and epiquinidine, are practically inactive. Compared to quinine and quinidine, the 9-epimers had significantly reduced hemozoin inhibition efficiency and did not affect pH-dependent aggregation of ferriprotoporphyrin IX (FPIX) heme. Magnetic susceptibility measurements showed that the 9-epimers perturb FPIX monomer-dimer equilibrium in favor of monomer, and UV-visible (VIS) titrations showed that Epiquinine and Epiquinidine bind monomer with similar affinity relative to quinine and quinidine. However, unique ring proton shifts in the presence of zinc(II) protoporphyrin IX (ZnPIX) indicate that binding of the 9-epimers to monomeric heme is via a distinct geometry.
Guanosine 3′,5′-cyclic monophosphate (cGMP) is a cyclic nucleotide derived from guanosine triphosphate (GTP). Cyclic GMP is a cellular regulatory agent that acts as a second messenger. Its levels increase in response to a variety of signals (acetylcholine, insulin, oxytocin). cGMP is involved in the regulation of kinases G. cGMP binds to sites on the regulatory units of protein kinase G (PKG) and activates the catalytic units, enabling them to phosphorylate their substrates. cGMP is a common regulator of ion channel conductance, glycogenolysis, and cellular apoptosis. It also relaxes smooth muscle tissues. In blood vessels, relaxation of vascular smooth muscles lead to vasodilation and increased blood flow. cGMP is a secondary messenger in phototransduction in the eye. In the photoreceptors of the mammalian eye, the presence of light activates cGMP phosphodiesterase 5 (PDE5), which degrades cGMP. The sodium ion channels in photoreceptors are cGMP-gated, so degradation of cGMP causes sodium channels to close, which leads to the hyperpolarization of the photoreceptor's plasma membrane and ultimately to visual information being sent to the brain. Mutations in the cGMP phosphodiesterase cause defects in cGMP metabolism leading to retinal disease. Inhibition of cGMP degrading PDE5 by its selective inhibitor sildenafil induced migraine without aura in 10 of 12 migraine patients and in healthy subjects.
McN-5652 is one of a series of substituted pyrrolo-isoquinolines that, as a group, potently inhibit the uptake of one or more of the monoamines, norepinephrine, serotonin and dopamine. Receptor binding experiments indicated that McN-5652 has a weak affinity for serotonin 5-HT2 and alpha-1 adrenergic receptors. Abnormalities of the 5-HT transporter have been suggested in mood disorders, since it is one of the major binding sites of antidepressants. (+)-[11C]McN 5652 is an appropriate radiotracer to quantify 5-HT transporters in regions with relatively high concentration of 5-HT transporters, such as the midbrain, thalamus, and basal ganglia, and should prove useful in elucidating abnormalities of 5-HT transmission in neuropsychiatric conditions.