U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 251 - 260 of 1932 results

Dasatinib [BMS 354825] is an orally active, small molecule, dual inhibitor of both SRC and ABL kinases that is under development with Bristol-Myers Squibb for the treatment of patients with chronic myelogenous leukaemia (CML) and imatinib-acquired resistance/intolerance. It’s used for the treatment of adults with chronic, accelerated, or myeloid or lymphoid blast phase chronic myeloid leukemia with resistance or intolerance to prior therapy. Also indicated for the treatment of adults with Philadelphia chromosome-positive acute lymphoblastic leukemia with resistance or intolerance to prior therapy. While imatinib remains a frontline therapy for CML, patients with advanced disease frequently develop resistance to imatinib therapy through multiple mechanisms. Dasatinib is also undergoing preclinical evaluation for its potential as a therapy against multiple myeloma. Bristol-Myers Squibb has a composition-of-matter patent covering this research approach that will expire in 2020. Dasatinib, at nanomolar concentrations, inhibits the following kinases: BCR-ABL, SRC family (SRC, LCK, YES, FYN), c-KIT, EPHA2, and PDGFRβ. Based on modeling studies, dasatinib is predicted to bind to multiple conformations of the ABL kinase.
Status:
First approved in 2006

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Ranolazine is a metabolic modulator developed by Syntex (Roche) and sold under the trade name Ranexa by Gilead Sciences. Ranexa has antianginal and anti-ischemic effects that do not depend upon reductions in heart rate or blood pressure. The mechanism of action of ranolazine is unknown. It does not increase the rate-pressure product, a measure of myocardial work, at maximal exercise. In vitro studies suggest that ranolazine is a P-gp inhibitor. Ranolazine is believed to have its effects via altering the trans-cellular late sodium current. It is by altering the intracellular sodium level that ranolazine affects the sodium-dependent calcium channels during myocardial ischemia. Thus, ranolazine indirectly prevents the calcium overload that causes cardiac ischemia. Because Ranexa prolongs the QT interval, it should be reserved for patients who have not achieved an adequate response with other antianginal drugs. Ranexa should be used in combination with amlodipine, beta-blockers or nitrates. The effect on angina rate or exercise tolerance appeared to be smaller in women than men.
Posaconazole is a triazole antifungal drug that is used to treat invasive infections by Candida species and Aspergillus species in severely immunocompromised patients. It marketed in the United States, the European Union, and in other countries by Schering-Plough under the trade name Noxafil. Noxafil is used for prophylaxis of invasive Aspergillus and Candida infections in patients, 13 years of age and older, who are at high risk of developing these infections due to being severely immunocompromised as a result of procedures such as hematopoietic stem cell transplant (HSCT) recipients with graft-versus-host disease (GVHD), or due to hematologic malignancies with prolonged neutropenia from chemotherapy. Also for the treatment of oropharyngeal candidiasis, including oropharyngeal candidiasis refractory to itraconazole and/or fluconazole. Posaconazole blocks the synthesis of ergosterol, a key component of the fungal cell membrane, through the inhibition of cytochrome P-450 dependent enzyme lanosterol 14α-demethylase responsible for the conversion of lanosterol to ergosterol in the fungal cell membrane. This results in an accumulation of methylated sterol precursors and a depletion of ergosterol within the cell membrane thus weakening the structure and function of the fungal cell membrane. This may be responsible for the antifungal activity of posaconazole. It is absorbed within three to five hours and predominately eliminated through the liver, and has a half-life of about 35 hours. Oral administration of posaconazole taken with a high-fat meal exceeds 90% bioavailability and increases the concentration by four times compared to fasting state.
Ciclesonide is a glucocorticoid receptor agonist indicated for the treatment of allergic rhinitis (Omnaris nasal spray) and asthma (Alvesco). It was also developed by Byk Gulden for chronic obstructive pulmonary disease (COPD), but no development had been reported for this indication since 1999. Ciclesonide is a pro-drug and rapidly metabolized to C21-desisobutyryl-ciclesonide which is more potent toward GR receptor than the parent drug.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Anidulafungin (brand names Eraxis (in U.S. and Russia) and Ecalta (in Europe)) is a semi-synthetic echinocandin with antifungal activity and it is active in vitro against many Candida, as well as some Aspergillus. Like other echinocandins, anidulafungin is not active against Cryptococcus neoformans, Trichosporon, Fusarium, or zygomycetes. This drug is indicated for the treatment of candidemia and the following Candida infections: intra-abdominal abscess and peritonitis; and for the treatment of esophageal candidiasis. Anidulafungin inhibits glucan synthase, an enzyme present in fungal, but not mammalian cells. This results in inhibition of the formation of 1,3--D-glucan, an essential component of the fungal cell wall.
Varenicline is a partial nicotinic acetylcholine receptor agonist, designed to partially activate this system while displacing nicotine at its sites of action in the brain. Varenicline is an alpha-4 beta-2 neuronal nicotinic acetylcholine receptor partial agonist. The drug shows high selectiviyty for this receptor subclass, relative to other nicotinic receptors (>500-fold alpha-3 beta-4, >3500-fold alpha-7, >20,000-fold alpha-1 beta gamma delta) or non-nicotinic receptors and transporters (>2000-fold). The drug competitively inhibits the ability of nicotine to bind to and activate the alpha-4 beta-2 receptor. The drug exerts mild agonistic activity at this site, though at a level much lower than nicotine; it is presumed that this activation eases withdrawal symptoms. Varenicline is sold under the trade name Chantix and Champix, it is indicated for use as an aid to smoking cessation treatment.
Micafungin (trade name Mycamine) is an echinocandin antifungal drug. Micafungin, the active ingredient in Mycamine, inhibits the synthesis of 1,3-β-D-glucan, an essential component of fungal cell walls, which is not present in mammalian cells. Micafungin is indicated for the treatment of candidemia, acute disseminated candidiasis, Candida peritonitis, abscesses and esophageal candidiasis. Possible histamine-mediated symptoms have been reported with Mycamine, including rash, pruritus, facial swelling and vasodilatation.
Conivaptan is an arginine vasopressin (AVP) receptor antagonist with affinity for AVP receptor subtypes V1A and V2. The antidiuretic action of AVP is mediated through activation of the V2 receptor, which functions to regulate water and electrolyte balance at the level of the collecting ducts in the kidney. Conivaptan was approved in 2004 for hyponatremia caused by syndrome of inappropriate antidiuretic hormone. Conicaptan is being evaluated for reduce intracranial pressure in patients with traumatic brain injury, and as a treatment for heart failure.

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Deferasirox (marketed as Exjade, Desirox, Deferasirox) is an iron chelator. Its main use is to reduce chronic iron overload in patients who are receiving long term blood transfusions for conditions such as beta-thalassemia and other chronic anemias. It is the first oral medication approved for this purpose in the USA by FDA in November 2005. It is approved in the European Union by the European Medicines Agency (EMA) for children 6 years and older for chronic iron overload from repeated blood transfusions. Deferasirox is highly selective for iron as Fe3+. In approximately 1-year clinical trials of patients with transfusional chronic iron overload associated with beta-thalassaemia, sickle cell disease, myelodysplastic syndrome or other rare chronic anaemias, deferasiroxhad a beneficial effect on liver iron concentrations (LIC) and serum ferritin levels. Deferasirox can cause acute renal failure, fatal in some patients and requiring dialysis in others. It was showed that most fatalities occurred in patients with multiple comorbidities in advanced stages of their hematological disorders.
Tigecycline (INN) is an antibiotic used to treat a number of bacterial infections. It is a first in class glycylcycline that is administered intravenously. For the treatment of infections caused by susceptible strains of the designated microorganisms in the following conditions: Complicated skin and skin structure infections caused by Escherichia coli, Enterococcus faecalis (vancomycin-susceptible isolates only), Staphylococcus aureus (methicillin-susceptible and -resistant isolates), Streptococcus agalactiae, Streptococcus anginosus grp. (includes S. anginosus, S. intermedius, and S. constellatus), Streptococcus pyogenes and Bacteroides fragilis. Complicated intra-abdominal infections caused by Citrobacter freundii, Enterobacter cloacae, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Enterococcus faecalis (vancomycin-susceptible isolates only), Staphylococcus aureus (methicillin-susceptible isolates only), Streptococcus anginosus grp. (includes S. anginosus, S. intermedius, and S. constellatus), Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides uniformis, Bacteroides vulgatus, Clostridium perfringens, and Peptostreptococcus micros. Tigecycline, a glycylcycline, inhibits protein translation in bacteria by binding to the 30S ribosomal subunit and blocking entry of amino-acyl tRNA molecules into the A site of the ribosome. This prevents incorporation of amino acid residues into elongating peptide chains. Tigecycline carries a glycylamido moiety attached to the 9-position of minocycline. The substitution pattern is not present in any naturally occurring or semisynthetic tetracycline and imparts certain microbiologic properties to tigecycline. In general, tigecycline is considered bacteriostatic; however, TYGACIL has demonstrated bactericidal activity against isolates of S. pneumoniae and L. pneumophila. In vitro studies have not demonstrated antagonism between tigecycline and other commonly used antibacterials.