{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Previously Marketed
Source:
VERALBA PROTOVERATRINE B by PITMAN MOORE
(1961)
Source URL:
First approved in 1953
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Protoveratrine B is one of two alkaloids isolated from the plant Veratrum albumen. The main effect of both alkaloids is vasodilation in all vascular beds thereby reducing blood pressure. In the 1950's it was recognized that Protoveratrine B is the preferred compound which can be administered at significantly higher doses before the patient begins to vomit.
Status:
US Previously Marketed
Source:
VERALBA PROTOVERATRINE B by PITMAN MOORE
(1961)
Source URL:
First approved in 1953
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Protoveratrine B is one of two alkaloids isolated from the plant Veratrum albumen. The main effect of both alkaloids is vasodilation in all vascular beds thereby reducing blood pressure. In the 1950's it was recognized that Protoveratrine B is the preferred compound which can be administered at significantly higher doses before the patient begins to vomit.
Status:
First approved in 1953
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Quercetin is a unique bioflavonoid that has been extensively studied by researchers over the past 30 years. Quercetin, the most abundant of the flavonoids (the name comes from the Latin –quercetum, meaning oak forest, quercus oak) consists of 3 rings and 5 hydroxyl groups. Quercetin is a member of the class of flavonoids called flavonoles and forms the backbone for many other flavonoids including the citrus flavonoids like rutin, hesperidins, Naringenin and tangeritin. It is widely distributed in the plant kingdom in rinds and barks. The best described property of Quercetin is its ability to act as antioxidant. Quercetin seems to be the most powerful flavonoids for protecting the body against reactive oxygen species, produced during the normal oxygen metabolism or are induced by exogenous damage [9, 10]. One of the most important mechanisms and the sequence of events by which free radicals interfere with the cellular functions seem to be the lipid peroxidation leading eventually the cell death. To protect this cellular death to happen from reactive oxygen species, living organisms have developed antioxidant line of defense systems [11]. These include enzymatic and non-enzymatic antioxidants that keep in check ROS/RNS level and repair oxidative cellular damage. The major enzymes, constituting the first line of defence, directly involved in the neutralization of ROS/RNS are: superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) The second line of defence is represented by radical scavenging antioxidants such as vitamin C, vitamin A and plant phytochemicals including quercetin that inhibit the oxidation chain initiation and prevent chain propagation. This may also include the termination of a chain by the reaction of two radicals. The repair and de novo enzymes act as the third line of defence by repairing damage and reconstituting membranes. These include lipases, proteases, DNA repair enzymes and transferases. Quercetin is a specific quinone reductase 2 (QR2) inhibitor, an enzyme (along with the human QR1 homolog) which catalyzes metabolism of toxic quinolines. Inhibition of QR2 in plasmodium may potentially cause lethal oxidative stress. The inhibition of antioxidant activity in plasmodium may contribute to killing the malaria causing parasites.
Status:
First approved in 1953
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Protoveratrine A, the principal alkaloid of Veratrum album, has been used in the treatment of hypertension but has largely been replaced by drugs with fewer adverse effects.
Status:
US Previously Marketed
Source:
VERALBA PROTOVERATRINE B by PITMAN MOORE
(1961)
Source URL:
First approved in 1953
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Protoveratrine B is one of two alkaloids isolated from the plant Veratrum albumen. The main effect of both alkaloids is vasodilation in all vascular beds thereby reducing blood pressure. In the 1950's it was recognized that Protoveratrine B is the preferred compound which can be administered at significantly higher doses before the patient begins to vomit.
Status:
First approved in 1953
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Protoveratrine A, the principal alkaloid of Veratrum album, has been used in the treatment of hypertension but has largely been replaced by drugs with fewer adverse effects.
Status:
US Previously Marketed
Source:
HETRAZAN by LEDERLE
(1950)
Source URL:
First approved in 1950
Source:
HETRAZAN by LEDERLE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Diethylcarbamazine is used in humans, dogs and cats for the treatment of parasitic infections, including pulmonary eosinophilia, loiasis, and lymphatic filariasis. The exact mechanism of its action is unknown, however some studies showed the involvment of inducible nitric-oxide synthase and the cyclooxygenase pathway. Although there is no information on whether the drug is marketed in the USA and Europe, it is currently used in India.
Status:
US Previously Marketed
Source:
HETRAZAN by LEDERLE
(1950)
Source URL:
First approved in 1950
Source:
HETRAZAN by LEDERLE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Diethylcarbamazine is used in humans, dogs and cats for the treatment of parasitic infections, including pulmonary eosinophilia, loiasis, and lymphatic filariasis. The exact mechanism of its action is unknown, however some studies showed the involvment of inducible nitric-oxide synthase and the cyclooxygenase pathway. Although there is no information on whether the drug is marketed in the USA and Europe, it is currently used in India.
Status:
First approved in 1949
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Adenosine monophosphate (AMP) is a nucleotide, consisting of a phosphate group, the sugar ribose, and the nucleobase adenine. AMP is an activator of several enzymes in the tissues. In the glycolytic pathway, the enzyme phosphofructokinase is inhibited by ATP but the inhibition is reversed by AMP, the deciding factor for the reaction being the ratio between ATP and AMP. In medicine, AMP is used mainly as an alternative to adenosine for treatment of ischemia and as a tool compound to measure hyperresponsiveness of airways.
Status:
First approved in 1949
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Adenosine monophosphate (AMP) is a nucleotide, consisting of a phosphate group, the sugar ribose, and the nucleobase adenine. AMP is an activator of several enzymes in the tissues. In the glycolytic pathway, the enzyme phosphofructokinase is inhibited by ATP but the inhibition is reversed by AMP, the deciding factor for the reaction being the ratio between ATP and AMP. In medicine, AMP is used mainly as an alternative to adenosine for treatment of ischemia and as a tool compound to measure hyperresponsiveness of airways.