U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 121 - 130 of 625 results

The BET-bromodomain inhibitor OTX015 (MK-8628) was initially developed by Mitsubishi Tanabe Pharma Corporation, but then was licensed by OncoEthix, privately held biotechnology company. OTX015 is a selective bromodomains: BRD2, BRD3, and BRD4 inhibitor and inhibits their binding to AcH4. Bromodomains have an important role in the targeting of chromatin-modifying enzymes to specific sites, including methyltransferases, HATs and transcription factors and regulate diverse biological processes from cell proliferation and differentiation to energy homeostasis and neurological processes. OTX015 has potent antiproliferative activity accompanied by c-MYC down-regulation in several tumor types, and has demonstrated synergism with the mTOR inhibitor everolimus in different models. Oral administration of OTX-015 markedly inhibited tumor growth and reduced tumor volume. OTX015 is currently in Phase 1b studies for the treatment of hematological malignancies and advanced solid tumors such as Triple Negative Breast Cancer, Non-small Cell Lung Cancer, Castrate-resistant Prostate Cancer (CRPC) and Pancreatic Ductal Adenocarcinoma. In addition, OTX015 was in phase II for the treatment of Glioblastoma Multiforme, but there were not detected clinical activity of the drug in the treatment populations and trial was closed.
Dovitinib is an orally active small molecule that exhibits potent inhibitory activity against multiple receptor tyrosine kinases (RTK) involved in tumor growth and angiogenesis. Dovitinib strongly binds to fibroblast growth factor receptor 3 (FGFR3) and inhibits its phosphorylation, which may result in the inhibition of tumor cell proliferation and the induction of tumor cell death. In addition, this agent may inhibit other members of the RTK superfamily, including the vascular endothelial growth factor receptor; fibroblast growth factor receptor 1; platelet-derived growth factor receptor type 3; FMS-like tyrosine kinase 3; stem cell factor receptor (c-KIT); and colony-stimulating factor receptor 1; this may result in an additional reduction in cellular proliferation and angiogenesis, and the induction of tumor cell apoptosis. There are several ongoing Phase I/III clinical trials for dovitinib.
Status:
Investigational
Source:
NCT00443924: Phase 1 Interventional Completed Ocular Hypertension
(2007)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Latrunculin B originates from Latrunculia (now Negombata) magnifica, a sponge from the Red Sea. Latrunculin B inhibits the assembly of actin microfilaments by 1:1 molecular binding of free actin monomers in the cell cytoplasm. It may be a potential therapeutic agent for glaucoma. Latrunculin B induced destabilization of the actin microfilament and apoptosis in a dose-dependent manner, as demonstrated by morphological changes and nuclear condensation in the PC3M cells. In addition, it resulted in an increase in the levels of gamma-H2AX recruitment, implicating the induction of DNA damage, including double-strand breaks. Induction of Bax, with little effect on Bcl-2 expression, indicated that actin disruption causes apoptosis through activation of Bax signaling in PC3M cells. This data might helps to develop the strategy for actin-based anticancer chemotherapy against highly metastatic prostate cancer.
Status:
Investigational
Source:
NCT00626652: Phase 2 Interventional Completed Atrial Fibrillation
(2008)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Japan Tobacco developed JTV-519 (known also as K201) as an antiarrhythmic agent. This drug was in Phase II trials for the potential treatment of Atrial Fibrillation, but study was terminated. In experimental myofibrillar overcontraction models, JTV-519 demonstrated greater cardioprotectant effects than propranolol, also, this drug investigated against heart failure, but then these researches have been discontinued. In addition, K201 was in phase II clinical trial for investigation its topical implementation for Atopic Dermatitis. The mechanism of its action is both complex and controversial, known that it is a non-specific blocker of sodium, potassium and calcium channels (multiple-channel blocker). It is believed to stabilize the closed state of the RyR2 (cardiac ryanodine receptor) by increasing its affinity for the FKBP12.6 (12.6 kDa FK506 binding protein), in addition was suggested, that suppression of spontaneous Ca2 release and the activity of RyR2 contributes, at least in part, to the anti-arrhythmic properties of K201.
Status:
Investigational
Source:
NCT00073034: Phase 2 Interventional Terminated Diabetes Mellitus
(2004)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Perzinfotel (EAA-090) is a novel squaric acid amide derivative that has been identified as a potential treatment for ischemic brain damage resulting from stroke. EAA-090 is a competitive inhibitor at the NMDA-selective subtype of the glutamate receptor. The compound demonstrates potent inhibitory activity in both in vitro and in vivo models of NMDA-induced excitotoxicity and provides neuroprotective efficacy in several animal models of stroke. EAA-090 is unique among competitive NMDA antagonists in displaying a clear separation between predicted efficacious dose and doses that induce PCP-like psychotomimetic side effects in both animals and humans. This unique profile makes EAA-090 an exciting candidate for assessing the neuroprotective potential of the competitive NMDA mechanism.
Status:
Investigational
Source:
NCT00233909: Phase 1/Phase 2 Interventional Completed Leukemia, Myeloid
(2005)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Zosuquidar (LY-335979) is an experimental antineoplastic drug. It is is a potent modulator of P-glycoprotein-mediated multi-drug resistance with Ki of 60 nM. Zosuqidar was initially characterized by Syntex Corporation, which was acquired by Roche in 1990. Roche licensed the drug to Eli Lilly in 1997. It was granted orphan drug status by the FDA in 2006 for AML. Zosuquidar Trihydrochloride had been in phase III clinical trials by Kanisa Pharmaceuticals for the treatment of acute myeloid leukaemia. However, this research has been discontinued.
Status:
Investigational
Source:
NCT00290953: Phase 2/Phase 3 Interventional Completed Lung Cancer
(2002)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Meclinertant (SR-48692) is the first non-peptide antagonist of neurotensin receptors. It is potent and selective vs the high-affinity binding sites and with a small activity on the levocabastine-sensitive binding sites. It is active on several species including man without partial agonist properties. In vivo, it is active by oral route with a long duration of action and it is able to cross the blood-brain barrier. Meclinertant may be considered a powerful tool for investigating the role of neurotensin in physiological and pathological processes. Meclinertant has been developing for the treatment of anorexia nervosa; colorectal cancer; irritable bowel syndrome; pain; pancreatic cancer; prostate cancer; schizophrenia; small cell lung cancer however its development was discontinued.
Sulforaphane is a naturally-occurring phytochemical belonging to the class of isothiocyanates. As the aglycone metabolite of glucosinolate glucoraphanin (sulforaphane glucosinolate), sulforaphane acts as an antioxidant and potent stimulator of endogenous detoxifying enzymes. This agent displays anticarcinogenic properties due to its ability to induce phase II detoxification enzymes, such as glutathione S-transferase and quinone reductase, thereby providing protection against certain carcinogens and toxic, reactive oxygen species. Broccoli sprouts contain large amounts of sulforaphane, which is also found in other cruciferous vegetables including cabbage and kale. Sulforaphane is under investigation for the treatment of Autism Spectrum Disorder and Schizophrenia.
Status:
US Previously Marketed
First approved in 2021

Class (Stereo):
CHEMICAL (ACHIRAL)



Mobocertinib (EXKIVITY™) is a first-in-class EGFR tyrosine kinase inhibitor being developed for the treatment of EGFR exon 20 insertion (EGFRex20ins) -positive non-small cell lung cancer (NSCLC). Mobocertinib is a kinase inhibitor of the epidermal growth factor receptor (EGFR) that irreversibly binds to and inhibits EGFR exon 20 insertion mutations at lower concentrations than wild type (WT) EGFR. Two pharmacologically-active metabolites (AP32960 and AP32914) with similar inhibitory profiles to mobocertinib have been identified in the plasma after oral administration of mobocertinib. In vitro, mobocertinib also inhibited the activity of other EGFR family members (HER2 and HER4) and one additional kinase (BLK) at clinically relevant concentrations (IC50 values <2 nM). Based on efficacy in patients whose disease had progressed on or after platinum-based therapy in a phase I/II trial, mobocertinib was recently granted accelerated approval in the USA in this indication. The drug is also being assessed for marketing approval in various other countries and territories including the EU and China.
Status:
US Previously Marketed
First approved in 2019

Class (Stereo):
CHEMICAL (ABSOLUTE)



Allopregnanolone is a neurosteroid metabolite of progesterone. It is an allosteric modulator of inhibitory γ-aminobutyric acid (GABA-A) receptors on neural stem cells and other cell types in the brain. Allopregnanolone has effects similar to those of other positive allosteric modulators of the GABA action at GABAA receptor such as the benzodiazepines, including anxiolytic, sedative, and anticonvulsant activity. A solution of allopregnanolone, SAGE-547 is an intravenous allosteric modulator of both synaptic and extrasynaptic γ-aminobutyric acid type A (GABAA)receptors. It's believed that allopregnanolone is effective as an anticonvulsant when prolonged seizure activity has become resistant to benzodiazepine treatment. Under the names brexanolone and SAGE-547, allopregnanolone is under development by SAGE Therapeutics as an intravenously administered drug for the treatment of super-refractory status epilepticus, postpartum depression, and essential tremor. Allopregnanolone is in phase III trials for the treatment of super-refractory status epilepticus (SRSE) and postpartum depression.

Showing 121 - 130 of 625 results