U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 2401 - 2410 of 2633 results

Status:
US Previously Marketed
Source:
Strychnine U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Strychnine U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Strychnine is an indole alkaloid obtained from the seeds of the Indian tree Strychnos nux-vomica. It gets its scientific name “strychnos” from Carl Linnaeus, who classified it back in 1753, but it was known to the population of India way before then. Nux vomica originates in India. Strychnine-containing baits are currently labelled for below-ground use and are intended for the control of pocket gophers. Their use as indoor pesticides has been eliminated since 1989. In the past, strychnine has been used as a pesticide to control rats, moles, gophers, and coyotes. Strychnine is highly toxic to most domestic animals. Strychnine is a competitive antagonist at glycine receptors and thus a convulsant. It has been used as an analeptic, in the treatment of nonketotic hyperglycinemia and sleep apnea.
Status:
US Previously Marketed
Source:
potassium glutamate
(1921)
Source URL:
First marketed in 1921
Source:
potassium glutamate
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
US Previously Marketed
Source:
Stearic Acid U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Stearic Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Stearic Acid is a typical example of a fatty acid, which are essentially long hydrocarbon chains containing a carboxyl group at one end and a methyl group at the other. The chain lengths can vary from 3 (propionic acid) to 24 (lignoceric acid) but the majority of fatty acids found in hydrogenated vegetable or animal oils are around C16-C20 in length. Stearic acid is a saturated acid, since there are no double bonds between neighbouring carbon atoms. Stearic acid is found in various animal and plant fats, and is a major component of cocoa butter and shea butter. Stearic acid is a very common amino acid is used in the manufacturing of more than 3,200 skin and hair care products sold in the United States. On product labels, it is sometimes listed under other names, including Century 1240, cetylacetic acid, Emersol 120, Emersol 132, Emersol 150, Formula 300 and Glycon DP. Stearic Acid is mainly used in the production of detergents, soaps, and cosmetics such as shampoos and shaving cream products. Stearic acid is used along with castor oil for preparing softeners in textile sizing. Being inexpensively available and chemically benign, stearic acid finds many niche applications It is used in the manufacture of candles, and as a hardener in candies when mixed with simple sugar and corn syrup. It is also used to produce dietary supplements. In fireworks, stearic acid is often used to coat metal powders such as aluminum and iron. This prevents oxidation, allowing compositions to be stored for a longer period of time. Stearic acid is a common lubricant during injection molding and pressing of ceramic powders. It is also used as a mold release for foam latex that is baked in stone molds. Stearic acid is known antidiabetic and antioxidant agent.
Status:
US Previously Marketed
Source:
Strychnine U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Strychnine U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (EPIMERIC)



Strychnine is an indole alkaloid obtained from the seeds of the Indian tree Strychnos nux-vomica. It gets its scientific name “strychnos” from Carl Linnaeus, who classified it back in 1753, but it was known to the population of India way before then. Nux vomica originates in India. Strychnine-containing baits are currently labelled for below-ground use and are intended for the control of pocket gophers. Their use as indoor pesticides has been eliminated since 1989. In the past, strychnine has been used as a pesticide to control rats, moles, gophers, and coyotes. Strychnine is highly toxic to most domestic animals. Strychnine is a competitive antagonist at glycine receptors and thus a convulsant. It has been used as an analeptic, in the treatment of nonketotic hyperglycinemia and sleep apnea.
Status:
US Previously Marketed
Source:
Strychnine U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Strychnine U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Strychnine is an indole alkaloid obtained from the seeds of the Indian tree Strychnos nux-vomica. It gets its scientific name “strychnos” from Carl Linnaeus, who classified it back in 1753, but it was known to the population of India way before then. Nux vomica originates in India. Strychnine-containing baits are currently labelled for below-ground use and are intended for the control of pocket gophers. Their use as indoor pesticides has been eliminated since 1989. In the past, strychnine has been used as a pesticide to control rats, moles, gophers, and coyotes. Strychnine is highly toxic to most domestic animals. Strychnine is a competitive antagonist at glycine receptors and thus a convulsant. It has been used as an analeptic, in the treatment of nonketotic hyperglycinemia and sleep apnea.
Status:
US Previously Marketed
Source:
Strychnine U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Strychnine U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Strychnine is an indole alkaloid obtained from the seeds of the Indian tree Strychnos nux-vomica. It gets its scientific name “strychnos” from Carl Linnaeus, who classified it back in 1753, but it was known to the population of India way before then. Nux vomica originates in India. Strychnine-containing baits are currently labelled for below-ground use and are intended for the control of pocket gophers. Their use as indoor pesticides has been eliminated since 1989. In the past, strychnine has been used as a pesticide to control rats, moles, gophers, and coyotes. Strychnine is highly toxic to most domestic animals. Strychnine is a competitive antagonist at glycine receptors and thus a convulsant. It has been used as an analeptic, in the treatment of nonketotic hyperglycinemia and sleep apnea.
Status:
US Previously Marketed
Source:
Cinchonine Sulphate U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Cinchonine Sulphate U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cinchonine is cinchona bark alkaloid, which was used to treat malaria. Cinchonine is more efficient than quinine in increasing the intracellular accumulation and restoring the cytotoxicity of doxorubicin, mitoxantrone and vincristine on well-characterized multidrug resistance (MDR) cell lines. In the phase I of clinical trial was investigated the properties of cinchonine combined with the CHVP (cyclophosphamide, doxorubicin, vinblastine, methylprednisolone) regimen in relapsed and refractory lymphoproliferative syndromes.
Status:
US Previously Marketed
Source:
Hydrastine Hydrochloride U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Hydrastine Hydrochloride U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Hydrastine is an alkaloid, one of the chief components of goldenseal (Hydrastis canadensis) which was discovered in 1851 by Alfred P. Durand. Goldenseal is unique from other hydrastine containing plants in that (-)-β- hydrastine is the only hydrastine isomer present, while the (+)-enantiomer is found in other hydrastine-containing plants. . While a number of therapeutic activities have been attributed to berberine, the pharmacological effects of hydrastine are less studied and its safety profile is poorly understood and to frame the relevant pharmacological effects of hydrastine within the specific stereochemistry found in goldenseal. Hydrastine has been shown to have several specific biological activities including, inhibition of tyrosine hydroxylase in PC-12 cells, a relaxant effect on guinea pig isolated trachea, and inhibition of several cytochrome P450 (CYP) enzymes. Toxicological studies performed on goldenseal powder in mice and rats indicate that at commonly used doses goldenseal supplements are non-toxic, thus its constituents are likely to be safe for human use when taken at reasonable doses. Despite goldenseal’s widespread usage, the pharmacokinetics of hydrastine in humans has not been adequately described. While it is difficult to determine the proper dosage range for any herbal product, a recent extensive survey of the literature suggests a daily dose of Hydrastis in the range of 0.9 to 3 g per day. Hydrastine has been reported to elicit abortifacient effects and induce preterm labor in pregnant women when taken orally.
Noscapine (also known as Narcotine, Nectodon, Nospen, Anarcotine and (archaic) Opiane) is a benzylisoquinoline alkaloid from plants of the poppy family, without painkilling properties. This agent is primarily used for its antitussive (cough-suppressing) effects. Noscapine is often used as an antitussive medication. A 2012 Dutch guideline, however, does not recommend its use for coughing. Noscapine can increase the effects of centrally sedating substances such as alcohol and hypnotics. Noscapine should not be taken in conjunction with warfarin as the anticoagulant effects of warfarin may be increased. Noscapine, and its synthetic derivatives called noscapinoids, are known to interact with microtubules and inhibit cancer cell proliferation. Mechanisms for its antitussive action are unknown, although animal studies have suggested central nervous system as a site of action. Furthermore, noscapine causes apoptosis in many cell types and has potent antitumor activity against solid murine lymphoid tumors (even when the drug was administered orally) and against human breast and bladder tumors implanted in nude mice. Because noscapine is water-soluble and absorbed after oral administration, its chemotherapeutic potential in human cancer merits thorough evaluation. Antifibrotic effect of noscapine based on novel mechanism, which it shows through EP2 prostaglandin E2 receptor-mediated activation of protein kinase A.
Noscapine (also known as Narcotine, Nectodon, Nospen, Anarcotine and (archaic) Opiane) is a benzylisoquinoline alkaloid from plants of the poppy family, without painkilling properties. This agent is primarily used for its antitussive (cough-suppressing) effects. Noscapine is often used as an antitussive medication. A 2012 Dutch guideline, however, does not recommend its use for coughing. Noscapine can increase the effects of centrally sedating substances such as alcohol and hypnotics. Noscapine should not be taken in conjunction with warfarin as the anticoagulant effects of warfarin may be increased. Noscapine, and its synthetic derivatives called noscapinoids, are known to interact with microtubules and inhibit cancer cell proliferation. Mechanisms for its antitussive action are unknown, although animal studies have suggested central nervous system as a site of action. Furthermore, noscapine causes apoptosis in many cell types and has potent antitumor activity against solid murine lymphoid tumors (even when the drug was administered orally) and against human breast and bladder tumors implanted in nude mice. Because noscapine is water-soluble and absorbed after oral administration, its chemotherapeutic potential in human cancer merits thorough evaluation. Antifibrotic effect of noscapine based on novel mechanism, which it shows through EP2 prostaglandin E2 receptor-mediated activation of protein kinase A.

Showing 2401 - 2410 of 2633 results