{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Previously Marketed
Source:
POTIGA by GLAXOSMITHKLINE
(2011)
Source URL:
First approved in 2011
Source:
POTIGA by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Ezogabine (U.S. adopted name) or retigabine (international nonproprietary name) is one of a family of aminopyrroles with anticonvulsant activity. It is used as an adjunctive treatment for partial epilepsies in treatment-experienced adult patients. The drug was approved by the European Medicines Agency under the trade name Trobalt and by the United States Food and Drug Administration (FDA), under the trade name Potiga. The mechanism by which ezogabine exerts its therapeutic effects has not been fully elucidated. In vitro studies indicate that ezogabine enhances transmembrane potassium currents mediated by the KCNQ (Kv7.2 to 7.5) family of ion channels. By activating KCNQ channels, ezogabine is thought to stabilize the resting membrane potential and reduce brain excitability. This mechanism of action is unique among antiepileptic drugs, and may hold promise for the treatment of other neurologic conditions, including migraine, tinnitus and neuropathic pain. In vitro studies suggest that ezogabine may also exert therapeutic effects through augmentation of GABA-mediated currents.
Status:
US Previously Marketed
Source:
ARCAPTA NEOHALER by NOVARTIS
(2011)
Source URL:
First approved in 2011
Source:
ARCAPTA NEOHALER by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Indacaterol is an ultra-long-acting beta-adrenoceptor agonist developed by Novartis. It was approved by the European Medicines Agency (EMA) under the trade name Onbrez Breezhaler on November 30, 2009, and by the United States Food and Drug Administration (FDA), under the trade name Arcapta Neohaler, on July 1, 2011. It needs to be taken only once a day, unlike the related drugs formoterol and salmeterol. It is licensed only for the treatment of chronic obstructive pulmonary disease (COPD) (long-term data in patients with asthma are thus far lacking). It is delivered as an aerosol formulation through a dry powder inhaler.
Status:
US Previously Marketed
Source:
ARCAPTA NEOHALER by NOVARTIS
(2011)
Source URL:
First approved in 2011
Source:
ARCAPTA NEOHALER by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Indacaterol is an ultra-long-acting beta-adrenoceptor agonist developed by Novartis. It was approved by the European Medicines Agency (EMA) under the trade name Onbrez Breezhaler on November 30, 2009, and by the United States Food and Drug Administration (FDA), under the trade name Arcapta Neohaler, on July 1, 2011. It needs to be taken only once a day, unlike the related drugs formoterol and salmeterol. It is licensed only for the treatment of chronic obstructive pulmonary disease (COPD) (long-term data in patients with asthma are thus far lacking). It is delivered as an aerosol formulation through a dry powder inhaler.
Status:
US Previously Marketed
Source:
DORIBAX by SHIONOGI INC
(2007)
Source URL:
First approved in 2007
Source:
DORIBAX by SHIONOGI INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Doripenem is a synthetic carbapenem that has broad antibacterial potency against aerobic and anaerobic gram-positive and gram-negative bacteria. Doripenem is structurally related to beta-lactam antibiotics and shares the bactericidal mode of action of other β-lactam antibiotics by targeting penicillin-binding proteins (PBPs) to inhibit the biosynthesis of the bacterial cell wall. Doripenem is resistant to hydrolysis by most β-lactamases and is resistant to inactivation by renal dehydropeptidases. Doripenem has many similarities to the other carbapenems, as well as some important differences, such as greater potency against Pseudomonas aeruginosa. It was found to be similar to comparator agents. The most common adverse effects related to doripenem therapy were headache, nausea, diarrhea, rash, and phlebitis.
Status:
US Previously Marketed
Source:
FACTIVE by LG CHEM LTD
(2003)
Source URL:
First approved in 2003
Source:
FACTIVE by LG CHEM LTD
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Gemifloxacin is an oral broad-spectrum quinolone antibacterial agent used in the treatment of acute bacterial exacerbation of chronic bronchitis and mild-to-moderate pneumonia. Gemifloxacin mesylate is marketed under the brand name Factive, indicated for the treatment of bacterial infection caused by susceptible strains such as S. pneumoniae, H. influenzae, H. parainfluenzae, or M. catarrhalis, S. pneumoniae (including multi-drug resistant strains [MDRSP]), M. pneumoniae, C. pneumoniae, or K. pneumoniae. Gemifloxacin has in vitro activity against a wide range of Gram-negative and Grampositive
microorganisms. Gemifloxacin is bactericidal with minimum bactericidal concentrations (MBCs) generally within one dilution of the minimum inhibitory
concentrations (MICs). Gemifloxacin acts by inhibiting DNA synthesis through the
inhibition of both DNA gyrase and topoisomerase IV (TOPO IV), which are essential for
bacterial growth. Streptococcus pneumoniae showing mutations in both DNA gyrase and
TOPO IV (double mutants) are resistant to most fluoroquinolones. Gemifloxacin has the
ability to inhibit both enzyme systems at therapeutically relevant drug levels in S.
pneumoniae (dual targeting), and has MIC values that are still in the susceptible range for
some of these double mutants.
Status:
US Previously Marketed
Source:
POVAN by PARKE DAVIS
(1959)
Source URL:
First approved in 1955
Class (Stereo):
CHEMICAL (ACHIRAL)
Pyrvinium (Viprynium) is an anthelmintic effective for pinworms. Pyrvinium is used in the treatment of enterobiasis caused by Enterobius vermicularis (pinworm). Pyrvinium has being shown to be a potent inhibitor of Wnt signaling (EC(50) of ∼10 nM). Pyrvinium binds all casein kinase 1 (CK1) family members in vitro at low nanomolar concentrations and pyrvinium selectively potentiates casein kinase 1α (CK1α) kinase activity. Pyrvinium pamoate (PP) is a potent noncompetitive inhibitor of the androgen receptor (AR). A noncompetitive AR inhibitor pyrvinium has significant potential to treat CRPC, including cancers driven by ligand-independent AR signaling.
Status:
US Previously Marketed
Source:
POVAN by PARKE DAVIS
(1959)
Source URL:
First approved in 1955
Class (Stereo):
CHEMICAL (ACHIRAL)
Pyrvinium (Viprynium) is an anthelmintic effective for pinworms. Pyrvinium is used in the treatment of enterobiasis caused by Enterobius vermicularis (pinworm). Pyrvinium has being shown to be a potent inhibitor of Wnt signaling (EC(50) of ∼10 nM). Pyrvinium binds all casein kinase 1 (CK1) family members in vitro at low nanomolar concentrations and pyrvinium selectively potentiates casein kinase 1α (CK1α) kinase activity. Pyrvinium pamoate (PP) is a potent noncompetitive inhibitor of the androgen receptor (AR). A noncompetitive AR inhibitor pyrvinium has significant potential to treat CRPC, including cancers driven by ligand-independent AR signaling.
Status:
US Previously Marketed
Source:
POVAN by PARKE DAVIS
(1959)
Source URL:
First approved in 1955
Class (Stereo):
CHEMICAL (ACHIRAL)
Pyrvinium (Viprynium) is an anthelmintic effective for pinworms. Pyrvinium is used in the treatment of enterobiasis caused by Enterobius vermicularis (pinworm). Pyrvinium has being shown to be a potent inhibitor of Wnt signaling (EC(50) of ∼10 nM). Pyrvinium binds all casein kinase 1 (CK1) family members in vitro at low nanomolar concentrations and pyrvinium selectively potentiates casein kinase 1α (CK1α) kinase activity. Pyrvinium pamoate (PP) is a potent noncompetitive inhibitor of the androgen receptor (AR). A noncompetitive AR inhibitor pyrvinium has significant potential to treat CRPC, including cancers driven by ligand-independent AR signaling.
Status:
US Previously Marketed
Source:
POVAN by PARKE DAVIS
(1959)
Source URL:
First approved in 1955
Class (Stereo):
CHEMICAL (ACHIRAL)
Pyrvinium (Viprynium) is an anthelmintic effective for pinworms. Pyrvinium is used in the treatment of enterobiasis caused by Enterobius vermicularis (pinworm). Pyrvinium has being shown to be a potent inhibitor of Wnt signaling (EC(50) of ∼10 nM). Pyrvinium binds all casein kinase 1 (CK1) family members in vitro at low nanomolar concentrations and pyrvinium selectively potentiates casein kinase 1α (CK1α) kinase activity. Pyrvinium pamoate (PP) is a potent noncompetitive inhibitor of the androgen receptor (AR). A noncompetitive AR inhibitor pyrvinium has significant potential to treat CRPC, including cancers driven by ligand-independent AR signaling.
Status:
US Previously Marketed
Source:
METATENSIN #2 by SANOFI AVENTIS US
(1982)
Source URL:
First approved in 1954
Source:
SERPASIL by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Reserpine is an alkaloid, isolated from the Rauwolfia serpentina plant and developed by Ciba pharma. Reserpine was approved by FDA for the treatment of hypertension and psychotic disorders. The drug exerts its effect by blocking two vesicular monoamine transporters, VMAT1 and VMAT2. The blockade results in vesicles that lose their ability to store neurotransmitter molecules. Neurotransmitters, thus retained in cytosol, are then neutralized by MAO.