{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
First approved in 1942
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Benzethonium chloride, also known as hyamine, is a synthetic quaternary ammonium salt. It has surfactant, antiseptic, and anti-infective properties and it is used as a topical antimicrobial agent in first aid antiseptics. It is also found in cosmetics and toiletries such as mouthwashes, anti-itch ointments, and antibacterial moist towelettes. Benzethonium chloride exhibits a broad spectrum of microbiocidal activity against bacteria, fungi, mold and viruses. The US Food and Drug Administration (FDA) specifies that the safe and effective concentrations for benzethonium chloride are 0.1-0.2% in first aid products. Aqueous solutions of benzethonium chloride are not absorbed through the skin. It is not approved in the US or Europe for use as a food additive. Being a quaternary ammonium salt, it is more toxic than negatively charged surfactants. However, in a two-year study on rats, there was no evidence of carcinogenic activity. Benzethonium chloride was characterized as a novel anticancer compound possessing both in vitro and in vivo efficacy justifying further investigation.
Status:
First approved in 1940
Class (Stereo):
CHEMICAL (ACHIRAL)
Menadione, a drug belong to class of Vitamin K, is prescribed for the treatment of hemorrhage, vitamin K deficiency, moderate to severe forms of hypoprothrombinaemia in adults and children. Menadione is a synthetic form of vitamin K, a lipid-soluble vitamin. Vitamin K is a vital cofactor for the biosynthesis of prothrombin, factor VII, IX, X, protein C and protein S. Menadione supports the functions of osteocalcin. Large doses of menadione have been reported to cause adverse outcomes including hemolytic anemia due to glucose-6-phosphate dehydrogenase deficiency, neonatal brain or liver damage, or neonatal death in some rare cases.
Status:
First approved in 1940
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Sulfathiazole is a short-acting sulfonamide with properties similar to those of sulfamethoxazole. It is now rarely used systemically due to its toxicity. Sulfathiazole is used with other sulfonamides, usually sulfabenzamide and sulfacetamide, in preparations for the topical treatment of vaginal infections and is also used with other drugs in the treatment of skin infections. Sulfathiazole sodium has been applied topically with other drugs in the treatment of eye infections. Sulfathiazole interferes with nucleic acid synthesis in microorganisms by blocking the conversion of p-aminobenzoic acid to the coenzyme dihydrofolic acid.It has properties similar to sulfamethoxazole.
Status:
US Previously Marketed
Source:
TRIQUIN QUINACRINE HYDROCHLORIDE by WINTHROP
(1961)
Source URL:
First approved in 1938
Class (Stereo):
CHEMICAL (RACEMIC)
Quinacrine was initially developed as an anti-malarial drug marketed under the name Atabrine. Also it was approved for the teratment of ascites, however it was wothdrawn for both indication in 1995 and 2003, respectively. The drug is also used for the treatment of giardiasis, lupus, rheumatoid arthritis, refractory pulmonary effusion and pneumothorax, induce female sterilization etc. Proposed mechanisms of action include DNA intercalation interference with RNA transcription and translation, inhibition of succinate oxidation interference with electron transport, inhibition of cholinesterase, and inhibitor of phospholipase.
Status:
US Previously Marketed
Source:
Transentine by Ciba
(1937)
Source URL:
First marketed in 1937
Source:
Transentine by Ciba
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Adiphenine is a ternary amino ligand. It is used as a local anesthetic that reduces the frequency of acetylcholine-induced single-channel currents. It was originally introduced as a spasmolytic agent. Adiphenine reduced the muscle tone of the gastrointestinal tract, bile duct and gallbladder, bronchi, bladder. It affects the tone of the muscles of the eye, causing the pupil dilated (mydriasis), increased intraocular pressure, and paralysis of accommodation. Influences on the cardiovascular system, causing tachycardia and improving AV-conduction. Adiphenine side effects are: nausea, vomiting, heartburn, dizziness, headache. Adiphenine has not been widely used clinically.
Status:
US Previously Marketed
Source:
GENTIA-JEL APPLICATORS by WESTWOOD
(1961)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Gentian violet ((GV) hexamethyl pararosaniline, also known as crystal violet, methyl violet) is a triphenylmethane dye with anti-bacterial, anti-fungal, anti-helminithic, anti-trypanosomal, anti-angiogenic and anti-tumor properties. GV has a lengthy history and has been used successfully as monotherapy and an adjunct to treatment in a variety of diseases. Gentian violet interacts with negatively charged components of bacterial cells including the lipopolysaccharide (on the cell wall), the peptidoglycan and DNA. A similar cell penetration and DNA binding process is thought to take place for fungal cells as well. Because Gentian violet is a mutagen and mitotic poison, cell growth is consequently inhibited. A photodynamic action of gentian violet, apparently mediated by a free-radical mechanism, has recently been described in bacteria and in the protozoan T. cruzi. Evidence also suggests that gentian violet dissipates the bacterial (and mitochondrial) membrane potential by inducing permeability. This is followed by respiratory inhibition. This anti-mitochondrial activity might explain gentian violet's efficacy towards both bacteria and yeast with relatively mild effects on mammalian cells.
Status:
US Previously Marketed
Source:
Stearic Acid U.S.P.
(1921)
Source URL:
First marketed in 1921
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Stearic Acid is a typical example of a fatty acid, which are essentially long hydrocarbon chains containing a carboxyl group at one end and a methyl group at the other. The chain lengths can vary from 3 (propionic acid) to 24 (lignoceric acid) but the majority of fatty acids found in hydrogenated vegetable or animal oils are around C16-C20 in length. Stearic acid is a saturated acid, since there are no double bonds between neighbouring carbon atoms. Stearic acid is found in various animal and plant fats, and is a major component of cocoa butter and shea butter. Stearic acid is a very common amino acid is used in the manufacturing of more than 3,200 skin and hair care products sold in the United States. On product labels, it is sometimes listed under other names, including Century 1240, cetylacetic acid, Emersol 120, Emersol 132, Emersol 150, Formula 300 and Glycon DP. Stearic Acid is mainly used in the production of detergents, soaps, and cosmetics such as shampoos and shaving cream products. Stearic acid is used along with castor oil for preparing softeners in textile sizing. Being inexpensively available and chemically benign, stearic acid finds many niche applications It is used in the manufacture of candles, and as a hardener in candies when mixed with simple sugar and corn syrup. It is also used to produce dietary supplements. In fireworks, stearic acid is often used to coat metal powders such as aluminum and iron. This prevents oxidation, allowing compositions to be stored for a longer period of time.
Stearic acid is a common lubricant during injection molding and pressing of ceramic powders. It is also used as a mold release for foam latex that is baked in stone molds. Stearic acid is known antidiabetic and antioxidant agent.
Status:
US Previously Marketed
First marketed in 1921
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Previously Marketed
Source:
Hydrastinine Hydrochloride U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Hydrastinine Hydrochloride U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Hydrastinine is a synthetic alkaloid prepared by various processes from either hydrastine, berberine, or narcotine. It exerts a strong stimulating action on the uterus of all species studied, including human. Hydrastinine and the closely related alkaloid cotarnine have been employed as hemostatics, particularly in abnormal uterine conditions. In the non-pregnant animal, hydrastinine in doses of 10 mg. depressed both tonus and activity, even after the section of the hypogastric. In the pregnant cat, it caused the uterus to contract. A stimulant action was also noted in the non-pregnant animal if nicotine were administered prior to hydrastinine. The rabbit uterus in situ was strongly contracted. Laidlaw believed that hydrastinine acted on the uterus both directly on the smooth muscle and also through its sympathetic innervation. Repeated administration of large doses for a period of time resulted in greatly increased amplitude of contractions which persisted after removal of the drug. The drug was patented by Bayer as a haemostatic drug during the 1910s.
Status:
US Previously Marketed
Source:
Quinine Hypophosphite N.F.
(1921)
Source URL:
First marketed in 1921
Source:
Quinine Hypophosphite N.F.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
QUININE HYPOPHOSPHITE, a salt of quinine, was formerly used, along with the hypophosphites of sodium, potassium, calcium, and iron, in the treatment of phthisis and neurasthenic conditions.