U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1841 - 1850 of 1891 results

Iproniazid is a non-selective, irreversible monoamine oxidase inhibitor (MAO) of the hydrazine class. It was originally developed for the treatment of Tuberculosis, but in 1952, its antidepressant properties were discovered when researchers noted that patients given isoniazid became inappropriately happy. Iproniazid is no longer clinically prescribed and has been withdrawn due to incidences of hepatotoxicity.
Reserpine is an alkaloid, isolated from the Rauwolfia serpentina plant and developed by Ciba pharma. Reserpine was approved by FDA for the treatment of hypertension and psychotic disorders. The drug exerts its effect by blocking two vesicular monoamine transporters, VMAT1 and VMAT2. The blockade results in vesicles that lose their ability to store neurotransmitter molecules. Neurotransmitters, thus retained in cytosol, are then neutralized by MAO.
Reserpine is an alkaloid, isolated from the Rauwolfia serpentina plant and developed by Ciba pharma. Reserpine was approved by FDA for the treatment of hypertension and psychotic disorders. The drug exerts its effect by blocking two vesicular monoamine transporters, VMAT1 and VMAT2. The blockade results in vesicles that lose their ability to store neurotransmitter molecules. Neurotransmitters, thus retained in cytosol, are then neutralized by MAO.
Reserpine is an alkaloid, isolated from the Rauwolfia serpentina plant and developed by Ciba pharma. Reserpine was approved by FDA for the treatment of hypertension and psychotic disorders. The drug exerts its effect by blocking two vesicular monoamine transporters, VMAT1 and VMAT2. The blockade results in vesicles that lose their ability to store neurotransmitter molecules. Neurotransmitters, thus retained in cytosol, are then neutralized by MAO.
Reserpine is an alkaloid, isolated from the Rauwolfia serpentina plant and developed by Ciba pharma. Reserpine was approved by FDA for the treatment of hypertension and psychotic disorders. The drug exerts its effect by blocking two vesicular monoamine transporters, VMAT1 and VMAT2. The blockade results in vesicles that lose their ability to store neurotransmitter molecules. Neurotransmitters, thus retained in cytosol, are then neutralized by MAO.
Reserpine is an alkaloid, isolated from the Rauwolfia serpentina plant and developed by Ciba pharma. Reserpine was approved by FDA for the treatment of hypertension and psychotic disorders. The drug exerts its effect by blocking two vesicular monoamine transporters, VMAT1 and VMAT2. The blockade results in vesicles that lose their ability to store neurotransmitter molecules. Neurotransmitters, thus retained in cytosol, are then neutralized by MAO.
Iodipamide is used as a contrast agent for cholecystography and intravenous cholangiography. Following intravenous administration of Cholografin Meglumine, iodipamide is carried to the liver where it is rapidly secreted. The contrast medium appears in the bile within 10 to 15 minutes after injection, thus permitting visualization of the hepatic and common bile ducts, even in cholecystectomized patients. Iodipamide (Cholografin Meglumine) is indicated for intravenous cholangiography and cholecystography as follows: (a) visualization of the gallbladder and biliary ducts in the differential diagnosis of acute abdominal conditions, (b) visualization of the biliary ducts, especially in patients with symptoms after cholecystectomy, and (c) visualization of the gallbladder in patients unable to take oral contrast media or to absorb contrast media from the gastrointestinal tract. The biliary ducts are readily visualized within about 25 minutes after administration, except in patients with impaired liver function. The gallbladder begins to fill within an hour after injection; maximum filling is reached after two to two and one-half hours. Organic iodine compounds block x-rays as they pass through the body, thereby allowing body structures containing iodine to be delineated in contrast to those structures that do not contain iodine. The degree of opacity produced by these iodinated organic compounds is directly proportional to the total amount (concentration and volume) of the iodinated contrast agent in the path of the x-rays. Iodipamide's primary excretion through the hepato-biliary system and concentration in bile allows visualization of the gallbladder and biliary ducts.
Iodipamide is used as a contrast agent for cholecystography and intravenous cholangiography. Following intravenous administration of Cholografin Meglumine, iodipamide is carried to the liver where it is rapidly secreted. The contrast medium appears in the bile within 10 to 15 minutes after injection, thus permitting visualization of the hepatic and common bile ducts, even in cholecystectomized patients. Iodipamide (Cholografin Meglumine) is indicated for intravenous cholangiography and cholecystography as follows: (a) visualization of the gallbladder and biliary ducts in the differential diagnosis of acute abdominal conditions, (b) visualization of the biliary ducts, especially in patients with symptoms after cholecystectomy, and (c) visualization of the gallbladder in patients unable to take oral contrast media or to absorb contrast media from the gastrointestinal tract. The biliary ducts are readily visualized within about 25 minutes after administration, except in patients with impaired liver function. The gallbladder begins to fill within an hour after injection; maximum filling is reached after two to two and one-half hours. Organic iodine compounds block x-rays as they pass through the body, thereby allowing body structures containing iodine to be delineated in contrast to those structures that do not contain iodine. The degree of opacity produced by these iodinated organic compounds is directly proportional to the total amount (concentration and volume) of the iodinated contrast agent in the path of the x-rays. Iodipamide's primary excretion through the hepato-biliary system and concentration in bile allows visualization of the gallbladder and biliary ducts.
Status:
US Previously Marketed
Source:
Neodrol by Pfizer
(1953)
Source URL:
First approved in 1953
Source:
Neodrol by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


STANOLONE, also known as dihydrotestosterone, is a potent androgenic metabolite of testosterone and anabolic agent for systemic use. It may be used as a replacement of male sex steroids in men who have androgen deficiency, for example as a result of the loss of both testes, and also the treatment of certain rare forms of aplastic anemia which are or may be responsive to anabolic androgens.
Status:
US Previously Marketed
Source:
Neodrol by Pfizer
(1953)
Source URL:
First approved in 1953
Source:
Neodrol by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


STANOLONE, also known as dihydrotestosterone, is a potent androgenic metabolite of testosterone and anabolic agent for systemic use. It may be used as a replacement of male sex steroids in men who have androgen deficiency, for example as a result of the loss of both testes, and also the treatment of certain rare forms of aplastic anemia which are or may be responsive to anabolic androgens.

Showing 1841 - 1850 of 1891 results