{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Zosuquidar (LY-335979) is an experimental antineoplastic drug. It is is a potent modulator of P-glycoprotein-mediated multi-drug resistance with Ki of 60 nM. Zosuqidar was initially characterized by Syntex Corporation, which was acquired by Roche in 1990. Roche licensed the drug to Eli Lilly in 1997. It was granted orphan drug status by the FDA in 2006 for AML. Zosuquidar Trihydrochloride had been in phase III clinical trials by Kanisa Pharmaceuticals for the treatment of acute myeloid leukaemia. However, this research has been discontinued.
Status:
US Previously Marketed
Source:
BEVYXXA by PORTOLA PHARMS INC
(2017)
Source URL:
First approved in 2017
Source:
BEVYXXA by PORTOLA PHARMS INC
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Betrixaban is an anticoagulant drug which acts as a direct factor Xa inhibitor. Betrixaban is now being developed by Portola Pharmaceuticals. Oral, once-daily Factor Xa inhibitor anticoagulant that directly inhibits the activity of Factor Xa, an important validated target in the blood coagulation pathway, to prevent life-threatening thrombosis. U.S. Food and Drug Administration granted Fast Track designation to betrixaban for extended-duration prevention of venous thromboembolism (VTE; blood clots) in acute medically ill patients (i.e., those who are hospitalized for serious medical conditions, such as heart failure, stroke, infection and pulmonary disease). Has the potential to become the first oral Factor Xa inhibitor anticoagulant approved for hospital-to-home prevention of VTE in acute medically ill patients.
Status:
US Previously Marketed
Source:
ALIQOPA by BAYER HEALTHCARE
(2017)
Source URL:
First approved in 2017
Source:
ALIQOPA by BAYER HEALTHCARE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Copanlisib, developed by Bayer, is a phosphoinositide 3-kinase (PI3K) inhibitor with potential antineoplastic activity. Copanlisib inhibits the activation of the PI3K signaling pathway, which may result in inhibition of tumor cell growth and survival in susceptible tumor cell populations. Activation of the PI3K signaling pathway is frequently associated with tumorigenesis and dysregulated PI3K signaling may contribute to tumor resistance to a variety of antineoplastic agents. Copanlisib is currently under Phase II/III clinical trials for the treatment of non-Hodgkin lymphoma and chronic lymphocytic leukemia.
Status:
US Previously Marketed
Source:
MACRILEN by NOVO
(2017)
Source URL:
First approved in 2017
Source:
MACRILEN by NOVO
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Macimorelin (AEZS 130) is an orally active, small-molecule, peptidomimetic growth hormone secretagogue receptor (GHSR1A) agonist (ghrelin analogue), being developed by AEterna Zentaris for the diagnosis of adult growth hormone deficiency (AGHD; somatotropin deficiency), and for the treatment of cachexia associated with chronic disease such as AIDS and cancer. Macimorelin was approved by the FDA in December 2017 under the market name Macrilen for oral solution. Macimorelin stimulates GH release by activating growth hormone secretagogue receptors present in the pituitary and hypothalamus. Macimorelin has been granted orphan drug designation by the FDA for diagnosis of AGHD.
Status:
US Previously Marketed
Source:
ALIQOPA by BAYER HEALTHCARE
(2017)
Source URL:
First approved in 2017
Source:
ALIQOPA by BAYER HEALTHCARE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Copanlisib, developed by Bayer, is a phosphoinositide 3-kinase (PI3K) inhibitor with potential antineoplastic activity. Copanlisib inhibits the activation of the PI3K signaling pathway, which may result in inhibition of tumor cell growth and survival in susceptible tumor cell populations. Activation of the PI3K signaling pathway is frequently associated with tumorigenesis and dysregulated PI3K signaling may contribute to tumor resistance to a variety of antineoplastic agents. Copanlisib is currently under Phase II/III clinical trials for the treatment of non-Hodgkin lymphoma and chronic lymphocytic leukemia.
Status:
US Previously Marketed
Source:
ZURAMPIC by IRONWOOD PHARMS INC
(2015)
Source URL:
First approved in 2015
Source:
ZURAMPIC by IRONWOOD PHARMS INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Lesinurad (brand name Zurampic) is a urate transporter inhibitor for treating hyperuricemia associated with gout in patients who have not achieved target serum uric acid levels with a xanthine oxidase inhibitor alone. In gout patients, Lesinurad lowered serum uric acid levels and increased renal clearance and fractional excretion of uric acid. Following single and multiple oral doses of Lesinurad to gout patients, dose-dependent decreases in serum uric acid levels and increases in urinary uric acid excretion were observed. Lesinurad reduces serum uric acid levels by inhibiting the function of transporter proteins involved in uric acid reabsorption in the kidney. Lesinurad inhibited the function of two apical transporters responsible for uric acid reabsorption, uric acid transporter 1 (URAT1) and organic anion transporter 4 (OAT4), with IC50 values of 7.3 and 3.7 µM, respectively. URAT1 is responsible for the majority of the reabsorption of filtered uric acid from the renal tubular lumen. OAT4 is a uric acid transporter associated with diuretic-induced hyperuricemia. Lesinurad does not interact with the uric acid reabsorption transporter SLC2A9 (Glut9), located on the basolateral membrane of the proximal tubule cell. Based on in vitro studies, lesinurad is an inhibitor of OATP1B1, OCT1, OAT1, and OAT3; however, lesinurad is not an in vivo inhibitor of these transporters. In vivo drug interaction studies indicate that lesinurad does not decrease the renal clearance of furosemide (substrate of OAT1/3), or affect the exposure of atorvastatin (substrate of OATP1B1) or metformin (substrate of OCT1). Based on in vitro studies, lesinurad has no relevant effect on P-glycoprotein.
Status:
US Previously Marketed
Source:
ZURAMPIC by IRONWOOD PHARMS INC
(2015)
Source URL:
First approved in 2015
Source:
ZURAMPIC by IRONWOOD PHARMS INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Lesinurad (brand name Zurampic) is a urate transporter inhibitor for treating hyperuricemia associated with gout in patients who have not achieved target serum uric acid levels with a xanthine oxidase inhibitor alone. In gout patients, Lesinurad lowered serum uric acid levels and increased renal clearance and fractional excretion of uric acid. Following single and multiple oral doses of Lesinurad to gout patients, dose-dependent decreases in serum uric acid levels and increases in urinary uric acid excretion were observed. Lesinurad reduces serum uric acid levels by inhibiting the function of transporter proteins involved in uric acid reabsorption in the kidney. Lesinurad inhibited the function of two apical transporters responsible for uric acid reabsorption, uric acid transporter 1 (URAT1) and organic anion transporter 4 (OAT4), with IC50 values of 7.3 and 3.7 µM, respectively. URAT1 is responsible for the majority of the reabsorption of filtered uric acid from the renal tubular lumen. OAT4 is a uric acid transporter associated with diuretic-induced hyperuricemia. Lesinurad does not interact with the uric acid reabsorption transporter SLC2A9 (Glut9), located on the basolateral membrane of the proximal tubule cell. Based on in vitro studies, lesinurad is an inhibitor of OATP1B1, OCT1, OAT1, and OAT3; however, lesinurad is not an in vivo inhibitor of these transporters. In vivo drug interaction studies indicate that lesinurad does not decrease the renal clearance of furosemide (substrate of OAT1/3), or affect the exposure of atorvastatin (substrate of OATP1B1) or metformin (substrate of OCT1). Based on in vitro studies, lesinurad has no relevant effect on P-glycoprotein.
Status:
US Previously Marketed
Source:
FARYDAK by SECURA
(2015)
Source URL:
First approved in 2015
Source:
FARYDAK by SECURA
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Panobinostat is an oral deacetylace (DAC) inhibitor approved on February 23, 2015 by the FDA for the treatment of multiple myeloma. The approval was accelerated based on progression-free survival, therefore confirmatory trials by the sponsor to demonstrate clinical efficacy in multiple myeloma treatment are in progress of being conducted. Panobinostat is marketed by Novartis under the brand name Farydak. Panobinostat is a deacetylase (DAC) inhibitor. DACs, also known as histone DACs (HDAC), are responsible for regulating the acetylation of about 1750 proteins in the body; their functions are involved in many biological processes including DNA replication and repair, chromatin remodelling, transcription of genes, progression of the cell-cycle, protein degradation and cytoskeletal reorganization. In multiple myeloma, there is an overexpression of DAC proteins. Panobinostat inhibits class I (HDACs 1, 2, 3, 8), class II (HDACs 4, 5, 6, 7, 9, 10) and class IV (HDAC 11) proteins. Panobinostat's antitumor activity is believed to be attributed to epigenetic modulation of gene expression and inhibition of protein metabolism. Panobinostat also exhibits cytotoxic synergy with bortezomib, a proteasome inhibitor concurrently used in treatment of multiple myeloma.
Status:
US Previously Marketed
Source:
DAKLINZA by BRISTOL-MYERS SQUIBB
(2015)
Source URL:
First approved in 2015
Source:
DAKLINZA by BRISTOL-MYERS SQUIBB
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Daclatasvir (BMS-790052) is a direct-acting antiviral agent against Hepatitis C Virus (HCV) used for the treatment of chronic HCV genotype 3 infection. Daclatasvir prevents RNA replication and virion assembly by binding to NS5A, a nonstructural phosphoprotein encoded by HCV. Binding to the N-terminus of the D1 domain of NS5A prevents its interaction with host cell proteins and membranes required for virion replication complex assembly.
Status:
US Previously Marketed
Source:
ZURAMPIC by IRONWOOD PHARMS INC
(2015)
Source URL:
First approved in 2015
Source:
ZURAMPIC by IRONWOOD PHARMS INC
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Lesinurad (brand name Zurampic) is a urate transporter inhibitor for treating hyperuricemia associated with gout in patients who have not achieved target serum uric acid levels with a xanthine oxidase inhibitor alone. In gout patients, Lesinurad lowered serum uric acid levels and increased renal clearance and fractional excretion of uric acid. Following single and multiple oral doses of Lesinurad to gout patients, dose-dependent decreases in serum uric acid levels and increases in urinary uric acid excretion were observed. Lesinurad reduces serum uric acid levels by inhibiting the function of transporter proteins involved in uric acid reabsorption in the kidney. Lesinurad inhibited the function of two apical transporters responsible for uric acid reabsorption, uric acid transporter 1 (URAT1) and organic anion transporter 4 (OAT4), with IC50 values of 7.3 and 3.7 µM, respectively. URAT1 is responsible for the majority of the reabsorption of filtered uric acid from the renal tubular lumen. OAT4 is a uric acid transporter associated with diuretic-induced hyperuricemia. Lesinurad does not interact with the uric acid reabsorption transporter SLC2A9 (Glut9), located on the basolateral membrane of the proximal tubule cell. Based on in vitro studies, lesinurad is an inhibitor of OATP1B1, OCT1, OAT1, and OAT3; however, lesinurad is not an in vivo inhibitor of these transporters. In vivo drug interaction studies indicate that lesinurad does not decrease the renal clearance of furosemide (substrate of OAT1/3), or affect the exposure of atorvastatin (substrate of OATP1B1) or metformin (substrate of OCT1). Based on in vitro studies, lesinurad has no relevant effect on P-glycoprotein.