U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 14 results

Linezolid is an antibiotic used for the treatment of infections caused by Gram-positive bacteria that are resistant to other antibiotics. Linezolid appears to be unique in that it blocks the initiation of protein production. Most common adverse reactions include diarrhea, vomiting, headache, nausea, and anemia. Linezolid has the potential for interaction with adrenergic and serotonergic agents. And with monoamine oxidase inhibitors because it’s nonselective inhibitor of monoamine oxidase.
Tolcapone is a potent, selective, and reversible inhibitor of catechol-O-methyltransferase (COMT). In humans, COMT is distributed throughout various organs. COMT catalyzes the transfer of the methyl group of S-adenosyl-L-methionine to the phenolic group of substrates that contain a catechol structure. Physiological substrates of COMT include dopa, catecholamines (dopamine, norepinephrine, epinephrine) and their hydroxylated metabolites. The function of COMT is the elimination of biologically active catechols and some other hydroxylated metabolites. COMT is responsible for the elimination of biologically active catechols and some other hydroxylated metabolites. In the presence of a decarboxylase inhibitor, COMT becomes the major metabolizing enzyme for levodopa catalyzing it to 3-methoxy-4-hydroxy-L-phenylalanine (3-OMD) in the brain and periphery. When tolcapone is given in conjunction with levodopa and an aromatic amino acid decarboxylase inhibitor, such as carbidopa, plasma levels of levodopa are more sustained than after administration of levodopa and an aromatic amino acid decarboxylase inhibitor alone. It is believed that these sustained plasma levels of levodopa result in more constant dopaminergic stimulation in the brain, leading to greater effects on the signs and symptoms of Parkinson's disease in patients as well as increased levodopa adverse effects, sometimes requiring a decrease in the dose of levodopa. The precise mechanism of action of tolcapone is unknown, but it is believed to be related to its ability to inhibit COMT and alter the plasma pharmacokinetics of levodopa, resulting in an increase in plasma levodopa concentrations. The inhibition of COMT also causes a reduction in circulating 3-OMD as a result of decreased peripheral metabolism of levodopa. This may lead to an increase distribution of levodopa into the CNS through the reduction of its competitive substrate, 3-OMD, for transport mechanisms. Sustained levodopa concentrations presumably result in more consistent dopaminergic stimulation, resulting in greater reduction in the manifestations of parkinsonian syndrome. Tolcapone is used as an adjunct to levodopa/carbidopa therapy for the symptomatic treatment of Parkinson's Disease. This drug is generally reserved for patients with parkinsonian syndrome receiving levodopa/carbidopa who are experiencing symptom fluctuations and are not responding adequately to or are not candidates for other adjunctive therapies. Tolcapone is sold under the brand name Tasmar.
Nimodipine is a dihydropyridine calcium antagonist which has been shown to dilate cerebral arterioles and increase cerebral blood flow in animals and humans. It has potential in the treatment of a range of cerebrovascular disorders. Major interest to date, however, has focused on its use in the prevention and treatment of the delayed ischaemic neurological deficits that frequently occur in patients with subarachnoid haemorrhages as a result of sustained cerebral vasospasm. Nimodipine, a Ca2+ antagonist with cerebrovasodilatory and anti-ischemic effects, binds to rat, guinea pig, and human brain membranes with high affinity (less than 1 nM). Only at higher concentrations has nimodipine been reported to block the release of some neurotransmitters and hormones from neuronal tissue.
Status:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Levodopa (L-DOPA) was first isolated from seedlings of Vicia faba by Marcus Guggenheim in 1913. Levodopa, a dopamine precursor, is an effective and well-tolerated dopamine replacement agent used to treat Parkinson's disease. Oral levodopa has been widely used for over 40 years, often in combination with a dopa-decarboxylase inhibitor carbidopa, which reduces many treatment complications, extending its half-life and increasing levodopa availability to the brain. Entacapone, a catechol-O-methyltransferase inhibitor, can also be used to improve the bioavailability of levodopa, especially when used in conjunction with a carbidopa.
Status:
Designated
Source:
EU-Orphan Drug:EU/3/15/1481(POSITIVE)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

BN-82451 belongs to a family of small molecules designated as multitargeting or hybrid molecules. BN-82451 is orally active, has good central nervous system penetration, and elicits potent neuronal protection and antiinflammatory properties. BN-82451 acts via three major pathways involved in neuronal death: excito-toxicity, oxidative stress, and inflammation, and is also a mitochondrial protective agent. Because BN-82451 is a multitargeting agent, each of its specific sites of action has been extensively evaluated, namely, neuronal excitotoxicity (sodium channel blocker), oxida-tive stress (antioxidant), neuroinflammation (cyclooxygenase inhibitor), and mitochondrialdysfunction (mitochondria-protective properties). BN-82451 was found to exert a significant protection in experimental animal models mimicking aspects of cerebral ischemia, Parkinson disease, Huntington disease, and more particularly amyotrophic lateral sclerosis. BN-82451 is in phase II clinical trials by Ipsen Pharma for the treatment of Huntington’s disease. In 2015, orphan drug designation was assigned in the U.S. to the compound for the indication.
Status:
US Previously Marketed
Source:
NIAMID 100 MG by PFIZER
(1961)
Source URL:
First approved in 1959
Source:
Nimid by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Nialamide is a non-selective, irreversible monoamine oxidase inhibitor of the hydrazine class. It was previously used as an antidepressant (trade name Niamid) but was withdrawn by Pfizer in 1963 due to the risk of hepatotoxicity.
Linezolid is an antibiotic used for the treatment of infections caused by Gram-positive bacteria that are resistant to other antibiotics. Linezolid appears to be unique in that it blocks the initiation of protein production. Most common adverse reactions include diarrhea, vomiting, headache, nausea, and anemia. Linezolid has the potential for interaction with adrenergic and serotonergic agents. And with monoamine oxidase inhibitors because it’s nonselective inhibitor of monoamine oxidase.
Status:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Levodopa (L-DOPA) was first isolated from seedlings of Vicia faba by Marcus Guggenheim in 1913. Levodopa, a dopamine precursor, is an effective and well-tolerated dopamine replacement agent used to treat Parkinson's disease. Oral levodopa has been widely used for over 40 years, often in combination with a dopa-decarboxylase inhibitor carbidopa, which reduces many treatment complications, extending its half-life and increasing levodopa availability to the brain. Entacapone, a catechol-O-methyltransferase inhibitor, can also be used to improve the bioavailability of levodopa, especially when used in conjunction with a carbidopa.
Status:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Levodopa (L-DOPA) was first isolated from seedlings of Vicia faba by Marcus Guggenheim in 1913. Levodopa, a dopamine precursor, is an effective and well-tolerated dopamine replacement agent used to treat Parkinson's disease. Oral levodopa has been widely used for over 40 years, often in combination with a dopa-decarboxylase inhibitor carbidopa, which reduces many treatment complications, extending its half-life and increasing levodopa availability to the brain. Entacapone, a catechol-O-methyltransferase inhibitor, can also be used to improve the bioavailability of levodopa, especially when used in conjunction with a carbidopa.
Status:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Levodopa (L-DOPA) was first isolated from seedlings of Vicia faba by Marcus Guggenheim in 1913. Levodopa, a dopamine precursor, is an effective and well-tolerated dopamine replacement agent used to treat Parkinson's disease. Oral levodopa has been widely used for over 40 years, often in combination with a dopa-decarboxylase inhibitor carbidopa, which reduces many treatment complications, extending its half-life and increasing levodopa availability to the brain. Entacapone, a catechol-O-methyltransferase inhibitor, can also be used to improve the bioavailability of levodopa, especially when used in conjunction with a carbidopa.

Showing 1 - 10 of 14 results