U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 17 results

Status:
First approved in 1999

Class (Stereo):
CHEMICAL (ACHIRAL)



Ketotifen is a cycloheptathiophene blocker of histamine H1 receptors and release of inflammatory mediators. It has been proposed for the treatment of asthma, rhinitis, skin allergies, and anaphylaxis. Ketotifen was developed in 1970 by Sandoz Pharmaceuticals of Switzerland. It is a benzocycloheptathiophene derivative and was initially marketed as an inhibitor of anaphylaxis. The pharmacodynamic properties of ketotifen are many, because it is an inhibitor of the release and/or activity of mast cell and basophil mediators, including histamine, neutrophil, and eosinophil chemotactic factors, arachidonic acid metabolites, prostaglandins, and leukotrienes. Properties of ketotifen which may contribute to its antiallergic activity and its ability to affect the underlying pathology of asthma include inhibition of the development of airway hyper-reactivity associated with activation of platelets by PAF (Platelet Activating Factor), inhibition of PAF-induced accumulation of eosinophils and platelets in the airways, suppression of the priming of eosinophils by human recombinant cytokines and antagonism of bronchoconstriction due to leukotrienes. Ketotifen is marketed under many brand names worldwide. Ketotifen inhibits the release of mediators from mast cells involved in hypersensitivity reactions. Decreased chemotaxis and activation of eosinophils have also been demonstrated. Ketotifen also inhibits cAMP phosphodiesterase.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Gluconic acid is a natural compound produced from glucose through a simple dehydrogenation reaction catalysed by glucose oxidase. Gluconic acid and its salts are used in the formulation of food, pharmaceutical and hygienic products.
Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)


D-Galacturonic acid is the main constituent of pectin, a naturally abundant compound. It is the monobasic acid resulting from oxidation of the primary alcohol group of D-galactose to carboxyl. D-Galacturonic acid prepared from pectin can be used to synthesize vitamin C. Native pectin is a mixture of polysaccharides, with the major component a polymer of -D-galacturonic acid. Pectin has numerous other medical and pharmaceutical uses, for example in combination with plant hemicelluloses and lignin, may be useful dietary constituents in preventing coronary heart disease, diverticular disease, ulcerative colitis, and a variety of other Western diseases. Pectin, a representative diety fibre, is a gelatinous substance derived from the cell walls of fruits and some plants and contains galacturonan, consisting of mostly long-chain D-galacturonic acids combined into units by α-1,4 linkages. As a kind of soluble dietary fiber, pectin has been proved of controlling glucose and blood lipids. It slows rapid infusion of the liquid meal into the gut by delaying gastric emptying.
Status:
US Previously Marketed

Class (Stereo):
CHEMICAL (ABSOLUTE)


N-Acetylglucosamine (N-acetyl-D-glucosamine, or GlcNAc,) is a monosaccharide and a derivative of glucose. It is part of a biopolymer in the bacterial cell wall, built from alternating units of GlcNAc and N-acetylmuramic acid (MurNAc), cross-linked with oligopeptides at the lactic acid residue of MurNAc. This layered structure is called peptidoglycan (formerly called murein). GlcNAc is the monomeric unit of the polymer chitin, which forms the outer coverings of insects and crustaceans. It is the main component of the radulas of mollusks, the beaks of cephalopods, and a major component of the cell walls of most fungi. It is lnsown, that the breakdown of glycosaminoglycans is an important consequence of inflammation at mucosal surfaces, and inhibition of metalloprotease activity may be effective in treating chronic inflammation. GlcNAc directly incorporates into glycosaminoglycans and glycoproteins, as a substrate for tissue repair mechanisms. It was shown, that GlcNAc was promising substance for treatment of chronic inflammatory bowel disease, with a mode of action which is distinct from conventional treatments. In experiments on rabbits with osteoarthritis, was found chondroprotective effects of aminomonosaccharide glucosamine, but no statistically significant difference was found between study groups. It was also investigated for the treatment of Multiple sclerosis, however, as a drug development target, GlcNAc had significant limitations. GlcNAc has poor membrane permeability, requiring high concentrations for biological effects.
Status:
US Previously Marketed
First approved in 1997

Class (Stereo):
CHEMICAL (ACHIRAL)



Emedastine is an antihistaminic agent, which was approved by FDA for the treatment of allergic conjunctivitis (Emadine brand name). The drug acts selectively on H1 receptors with lower affinity to H2 and H3 subtypes. Emedastine has a relatively unfavorable CNS effect profile. A small percentage of patients reported somnolence as an adverse effect after administration.
Status:
Possibly Marketed Outside US
Source:
ASTELIN by Muro Pharmaceutical
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Azelastine (brand names AZEP, ASTEPRO, ASTELIN etc.) a phthalazine derivative, is an antihistamine and mast cell stabilizer available as a nasal spray for hay fever and as eye drops for allergic conjunctivitis. Azelastine is a potent antiallergic compound with histamine H1-receptor antagonist activity and a rapid onset and long duration of action. The major metabolite, desmethylazelastine, also exhibits H1- receptor antagonist activity. AZEP Nasal Spray is administered as a racemic mixture. The racemate, R- and S- enantiomers were equally potent at inhibiting eyelid histamine-induced oedema in rats, however the R-enantiomer was 2-fold less active at inhibiting eyeball histamine-induced oedema.
Status:
First approved in 1999

Class (Stereo):
CHEMICAL (ACHIRAL)



Ketotifen is a cycloheptathiophene blocker of histamine H1 receptors and release of inflammatory mediators. It has been proposed for the treatment of asthma, rhinitis, skin allergies, and anaphylaxis. Ketotifen was developed in 1970 by Sandoz Pharmaceuticals of Switzerland. It is a benzocycloheptathiophene derivative and was initially marketed as an inhibitor of anaphylaxis. The pharmacodynamic properties of ketotifen are many, because it is an inhibitor of the release and/or activity of mast cell and basophil mediators, including histamine, neutrophil, and eosinophil chemotactic factors, arachidonic acid metabolites, prostaglandins, and leukotrienes. Properties of ketotifen which may contribute to its antiallergic activity and its ability to affect the underlying pathology of asthma include inhibition of the development of airway hyper-reactivity associated with activation of platelets by PAF (Platelet Activating Factor), inhibition of PAF-induced accumulation of eosinophils and platelets in the airways, suppression of the priming of eosinophils by human recombinant cytokines and antagonism of bronchoconstriction due to leukotrienes. Ketotifen is marketed under many brand names worldwide. Ketotifen inhibits the release of mediators from mast cells involved in hypersensitivity reactions. Decreased chemotaxis and activation of eosinophils have also been demonstrated. Ketotifen also inhibits cAMP phosphodiesterase.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Gluconic acid is a natural compound produced from glucose through a simple dehydrogenation reaction catalysed by glucose oxidase. Gluconic acid and its salts are used in the formulation of food, pharmaceutical and hygienic products.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Gluconic acid is a natural compound produced from glucose through a simple dehydrogenation reaction catalysed by glucose oxidase. Gluconic acid and its salts are used in the formulation of food, pharmaceutical and hygienic products.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Gluconic acid is a natural compound produced from glucose through a simple dehydrogenation reaction catalysed by glucose oxidase. Gluconic acid and its salts are used in the formulation of food, pharmaceutical and hygienic products.

Showing 1 - 10 of 17 results