U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 27 results

Vidarabine or 9-β-D-arabinofuranosyladenine (ara-A, trade name Vira-A) is a synthetic purine nucleoside analog with in vitro and in vivo inhibitory activity against herpes simplex virus types 1 (HSV-1), 2 (HSV-2), and varicella-zoster virus (VZV). The inhibitory activity of Vidarabine is highly selective due to its affinity for the enzyme thymidine kinase (TK) encoded by HSV and VZV. This viral enzyme converts Vidarabine into Vidarabine monophosphate, a nucleotide analog. The monophosphate is further converted into diphosphate by cellular guanylate kinase and into triphosphate by a number of cellular enzymes. in vitro, Vidarabine triphosphate stops replication of herpes viral DNA. When used as a substrate for viral DNA polymerase, Vidarabine triphosphate competitively inhibits dATP leading to the formation of 'faulty' DNA. This is where Vidarabine triphosphate is incorporated into the DNA strand replacing many of the adenosine bases. This results in the prevention of DNA synthesis, as phosphodiester bridges can longer to be built, destabilizing the strand.
Alitretinoin, or 9-cis-retinoic acid, is a form of vitamin A. It is also used in medicine as an antineoplastic (anti-cancer) agent developed by Ligand Pharmaceuticals. Alitretinoin (9-cis-retinoic acid) is a naturally-occurring endogenous retinoid indicated for topical treatment of cutaneous lesions in patients with AIDS-related Kaposi's sarcoma. Alitretinoin inhibits the growth of Kaposi's sarcoma (KS) cells in vitro. Alitretinoin binds to and activates all known intracellular retinoid receptor subtypes (RARa, RARb, RARg, RXRa, RXRb and RXRg). Once activated these receptors function as transcription factors that regulate the expression of genes that control the process of cellular differentiation and proliferation in both normal and neoplastic cells. In the United States, topical alitretinoin (in the form of a gel; trade name Panretin) is indicated for the treatment of skin lesions in AIDS-related Kaposi's sarcoma.
Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

7-aminocephalosporanicacid (7-ACA) is convenient starting material for the industrial production of various kinds of semisynthetic cephalosporin antibiotics. In many cases, chemical modifications at the C-7 position is required. Industrially, 7-ACA is derived by chemical or enzymatic deacylation from cephalosporin C, which is fermentatively produced by Acremonium chrysogenum. 7-ACA is a stable only at neutral pHs, enzymatic manipulations are desirable for chemical modifications in the production of cephalosporin related compounds.
Vidarabine or 9-β-D-arabinofuranosyladenine (ara-A, trade name Vira-A) is a synthetic purine nucleoside analog with in vitro and in vivo inhibitory activity against herpes simplex virus types 1 (HSV-1), 2 (HSV-2), and varicella-zoster virus (VZV). The inhibitory activity of Vidarabine is highly selective due to its affinity for the enzyme thymidine kinase (TK) encoded by HSV and VZV. This viral enzyme converts Vidarabine into Vidarabine monophosphate, a nucleotide analog. The monophosphate is further converted into diphosphate by cellular guanylate kinase and into triphosphate by a number of cellular enzymes. in vitro, Vidarabine triphosphate stops replication of herpes viral DNA. When used as a substrate for viral DNA polymerase, Vidarabine triphosphate competitively inhibits dATP leading to the formation of 'faulty' DNA. This is where Vidarabine triphosphate is incorporated into the DNA strand replacing many of the adenosine bases. This results in the prevention of DNA synthesis, as phosphodiester bridges can longer to be built, destabilizing the strand.
Vidarabine or 9-β-D-arabinofuranosyladenine (ara-A, trade name Vira-A) is a synthetic purine nucleoside analog with in vitro and in vivo inhibitory activity against herpes simplex virus types 1 (HSV-1), 2 (HSV-2), and varicella-zoster virus (VZV). The inhibitory activity of Vidarabine is highly selective due to its affinity for the enzyme thymidine kinase (TK) encoded by HSV and VZV. This viral enzyme converts Vidarabine into Vidarabine monophosphate, a nucleotide analog. The monophosphate is further converted into diphosphate by cellular guanylate kinase and into triphosphate by a number of cellular enzymes. in vitro, Vidarabine triphosphate stops replication of herpes viral DNA. When used as a substrate for viral DNA polymerase, Vidarabine triphosphate competitively inhibits dATP leading to the formation of 'faulty' DNA. This is where Vidarabine triphosphate is incorporated into the DNA strand replacing many of the adenosine bases. This results in the prevention of DNA synthesis, as phosphodiester bridges can longer to be built, destabilizing the strand.
Vidarabine or 9-β-D-arabinofuranosyladenine (ara-A, trade name Vira-A) is a synthetic purine nucleoside analog with in vitro and in vivo inhibitory activity against herpes simplex virus types 1 (HSV-1), 2 (HSV-2), and varicella-zoster virus (VZV). The inhibitory activity of Vidarabine is highly selective due to its affinity for the enzyme thymidine kinase (TK) encoded by HSV and VZV. This viral enzyme converts Vidarabine into Vidarabine monophosphate, a nucleotide analog. The monophosphate is further converted into diphosphate by cellular guanylate kinase and into triphosphate by a number of cellular enzymes. in vitro, Vidarabine triphosphate stops replication of herpes viral DNA. When used as a substrate for viral DNA polymerase, Vidarabine triphosphate competitively inhibits dATP leading to the formation of 'faulty' DNA. This is where Vidarabine triphosphate is incorporated into the DNA strand replacing many of the adenosine bases. This results in the prevention of DNA synthesis, as phosphodiester bridges can longer to be built, destabilizing the strand.
Vidarabine or 9-β-D-arabinofuranosyladenine (ara-A, trade name Vira-A) is a synthetic purine nucleoside analog with in vitro and in vivo inhibitory activity against herpes simplex virus types 1 (HSV-1), 2 (HSV-2), and varicella-zoster virus (VZV). The inhibitory activity of Vidarabine is highly selective due to its affinity for the enzyme thymidine kinase (TK) encoded by HSV and VZV. This viral enzyme converts Vidarabine into Vidarabine monophosphate, a nucleotide analog. The monophosphate is further converted into diphosphate by cellular guanylate kinase and into triphosphate by a number of cellular enzymes. in vitro, Vidarabine triphosphate stops replication of herpes viral DNA. When used as a substrate for viral DNA polymerase, Vidarabine triphosphate competitively inhibits dATP leading to the formation of 'faulty' DNA. This is where Vidarabine triphosphate is incorporated into the DNA strand replacing many of the adenosine bases. This results in the prevention of DNA synthesis, as phosphodiester bridges can longer to be built, destabilizing the strand.
Alitretinoin, or 9-cis-retinoic acid, is a form of vitamin A. It is also used in medicine as an antineoplastic (anti-cancer) agent developed by Ligand Pharmaceuticals. Alitretinoin (9-cis-retinoic acid) is a naturally-occurring endogenous retinoid indicated for topical treatment of cutaneous lesions in patients with AIDS-related Kaposi's sarcoma. Alitretinoin inhibits the growth of Kaposi's sarcoma (KS) cells in vitro. Alitretinoin binds to and activates all known intracellular retinoid receptor subtypes (RARa, RARb, RARg, RXRa, RXRb and RXRg). Once activated these receptors function as transcription factors that regulate the expression of genes that control the process of cellular differentiation and proliferation in both normal and neoplastic cells. In the United States, topical alitretinoin (in the form of a gel; trade name Panretin) is indicated for the treatment of skin lesions in AIDS-related Kaposi's sarcoma.
Alitretinoin, or 9-cis-retinoic acid, is a form of vitamin A. It is also used in medicine as an antineoplastic (anti-cancer) agent developed by Ligand Pharmaceuticals. Alitretinoin (9-cis-retinoic acid) is a naturally-occurring endogenous retinoid indicated for topical treatment of cutaneous lesions in patients with AIDS-related Kaposi's sarcoma. Alitretinoin inhibits the growth of Kaposi's sarcoma (KS) cells in vitro. Alitretinoin binds to and activates all known intracellular retinoid receptor subtypes (RARa, RARb, RARg, RXRa, RXRb and RXRg). Once activated these receptors function as transcription factors that regulate the expression of genes that control the process of cellular differentiation and proliferation in both normal and neoplastic cells. In the United States, topical alitretinoin (in the form of a gel; trade name Panretin) is indicated for the treatment of skin lesions in AIDS-related Kaposi's sarcoma.