U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 29 of 29 results

Alatrofloxacin is a fluoroquinolone antibiotic developed as a mesylate salt and was sold under brand name Trovan, but was withdrawn from the U.S. market in 2001. Trovan was indicated for the treatment of patients initiating therapy in in-patient health care facilities (i.e., hospitals and long term nursing care facilities) with serious, life- or limb-threatening infections caused by susceptible strains of the designated microorganisms in the conditions listed below. Nosocomial pneumonia caused by Escherichia coli, Pseudomonas aeruginosa, Haemophilus influenzae, or Staphylococcus aureus. Community acquired pneumonia caused by Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus. Complicated intra-abdominal infections, including post-surgical infections caused by Escherichia coli. Gynecologic and pelvic infections including endomyometritis, parametritis, septic abortion and post-partum infections caused by Escherichia coli, Bacteroides fragilis, viridans group streptococci, Enterococcus faecalis. Complicated skin and skin structure infections, including diabetic foot infections, caused by Staphylococcus aureus, Streptococcus agalactiae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, or Proteus mirabilis. After intravenous administration, alatrofloxacin is rapidly converted to trovafloxacin, which is responsible for therapeutic effect. Plasma concentrations of alatrofloxacin are below quantifiable levels within 5 to 10 minutes of completion of a 1 hour infusion.
Alatrofloxacin is a fluoroquinolone antibiotic developed as a mesylate salt and was sold under brand name Trovan, but was withdrawn from the U.S. market in 2001. Trovan was indicated for the treatment of patients initiating therapy in in-patient health care facilities (i.e., hospitals and long term nursing care facilities) with serious, life- or limb-threatening infections caused by susceptible strains of the designated microorganisms in the conditions listed below. Nosocomial pneumonia caused by Escherichia coli, Pseudomonas aeruginosa, Haemophilus influenzae, or Staphylococcus aureus. Community acquired pneumonia caused by Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus. Complicated intra-abdominal infections, including post-surgical infections caused by Escherichia coli. Gynecologic and pelvic infections including endomyometritis, parametritis, septic abortion and post-partum infections caused by Escherichia coli, Bacteroides fragilis, viridans group streptococci, Enterococcus faecalis. Complicated skin and skin structure infections, including diabetic foot infections, caused by Staphylococcus aureus, Streptococcus agalactiae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, or Proteus mirabilis. After intravenous administration, alatrofloxacin is rapidly converted to trovafloxacin, which is responsible for therapeutic effect. Plasma concentrations of alatrofloxacin are below quantifiable levels within 5 to 10 minutes of completion of a 1 hour infusion.
Alatrofloxacin is a fluoroquinolone antibiotic developed as a mesylate salt and was sold under brand name Trovan, but was withdrawn from the U.S. market in 2001. Trovan was indicated for the treatment of patients initiating therapy in in-patient health care facilities (i.e., hospitals and long term nursing care facilities) with serious, life- or limb-threatening infections caused by susceptible strains of the designated microorganisms in the conditions listed below. Nosocomial pneumonia caused by Escherichia coli, Pseudomonas aeruginosa, Haemophilus influenzae, or Staphylococcus aureus. Community acquired pneumonia caused by Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus. Complicated intra-abdominal infections, including post-surgical infections caused by Escherichia coli. Gynecologic and pelvic infections including endomyometritis, parametritis, septic abortion and post-partum infections caused by Escherichia coli, Bacteroides fragilis, viridans group streptococci, Enterococcus faecalis. Complicated skin and skin structure infections, including diabetic foot infections, caused by Staphylococcus aureus, Streptococcus agalactiae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, or Proteus mirabilis. After intravenous administration, alatrofloxacin is rapidly converted to trovafloxacin, which is responsible for therapeutic effect. Plasma concentrations of alatrofloxacin are below quantifiable levels within 5 to 10 minutes of completion of a 1 hour infusion.
Alatrofloxacin is a fluoroquinolone antibiotic developed as a mesylate salt and was sold under brand name Trovan, but was withdrawn from the U.S. market in 2001. Trovan was indicated for the treatment of patients initiating therapy in in-patient health care facilities (i.e., hospitals and long term nursing care facilities) with serious, life- or limb-threatening infections caused by susceptible strains of the designated microorganisms in the conditions listed below. Nosocomial pneumonia caused by Escherichia coli, Pseudomonas aeruginosa, Haemophilus influenzae, or Staphylococcus aureus. Community acquired pneumonia caused by Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus. Complicated intra-abdominal infections, including post-surgical infections caused by Escherichia coli. Gynecologic and pelvic infections including endomyometritis, parametritis, septic abortion and post-partum infections caused by Escherichia coli, Bacteroides fragilis, viridans group streptococci, Enterococcus faecalis. Complicated skin and skin structure infections, including diabetic foot infections, caused by Staphylococcus aureus, Streptococcus agalactiae, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, or Proteus mirabilis. After intravenous administration, alatrofloxacin is rapidly converted to trovafloxacin, which is responsible for therapeutic effect. Plasma concentrations of alatrofloxacin are below quantifiable levels within 5 to 10 minutes of completion of a 1 hour infusion.
Status:
US Previously Marketed
Source:
Alcopara by Burroughs Wellcome
(1967)
Source URL:
First approved in 1967
Source:
Alcopara by Burroughs Wellcome
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


BEPHENIUM HYDROXYNAPHTHOATE is an anthelmintic agent used in the treatment of hookworm and roundworm infections (Ancylostoma duodenale, Ascaris lumbricoides, and Necatore americanus). It targets the AChRs of nematodes producing spastic paralysis of the worms.
Status:
US Previously Marketed
Source:
CAMOQUIN HYDROCHLORIDE by PARKE DAVIS
(1950)
Source URL:
First approved in 1950

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Amodiaquine is a medication used to treat malaria, including Plasmodium falciparum malaria when uncomplicated. The mechanism of plasmodicidal action of amodiaquine is not completely certain. Like other quinoline derivatives, it is thought to inhibit heme polymerase activity. This results in accumulation of free heme, which is toxic to the parasites. The drug binds the free heme preventing the parasite from converting it to a form less toxic. This drug-heme complex is toxic and disrupts membrane function. The side effects of amodiaquine are generally minor to moderate and are similar to those of chloroquine. Rarely liver problems or low blood cell levels may occur. When taken in excess headaches, trouble seeing, seizures, and cardiac arrest may occur. After oral administration amodiaquine hydrochloride is rapidly absorbed,and undergoes rapid and extensive metabolism to desethylamodiaquine which concentrates in red blood cells. It is likely that desethylamodiaquine, not amodiaquine, is responsible for most of the observed antimalarial activity, and that the toxic effects of amodiaquine after oral administration may in part be due to desethylamodiaquine.
Status:
US Previously Marketed
Source:
CAMOQUIN HYDROCHLORIDE by PARKE DAVIS
(1950)
Source URL:
First approved in 1950

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Amodiaquine is a medication used to treat malaria, including Plasmodium falciparum malaria when uncomplicated. The mechanism of plasmodicidal action of amodiaquine is not completely certain. Like other quinoline derivatives, it is thought to inhibit heme polymerase activity. This results in accumulation of free heme, which is toxic to the parasites. The drug binds the free heme preventing the parasite from converting it to a form less toxic. This drug-heme complex is toxic and disrupts membrane function. The side effects of amodiaquine are generally minor to moderate and are similar to those of chloroquine. Rarely liver problems or low blood cell levels may occur. When taken in excess headaches, trouble seeing, seizures, and cardiac arrest may occur. After oral administration amodiaquine hydrochloride is rapidly absorbed,and undergoes rapid and extensive metabolism to desethylamodiaquine which concentrates in red blood cells. It is likely that desethylamodiaquine, not amodiaquine, is responsible for most of the observed antimalarial activity, and that the toxic effects of amodiaquine after oral administration may in part be due to desethylamodiaquine.
Nimorazole is an antimicrobial with activity against anaerobic bacteria and protozoa. Its actions and properties are similar to metronidazole. It has also been used in trials studying the treatment of Hypoxia, Radiotherapy, Hypoxic Modification, Gene Profile, Gene Signature, and Head and Neck Squamous Cell Carcinoma, among others. Azanta is developing, nimorazole, as an oral hypoxic radio-sensitiser for the treatment of patients with head and neck cancer who are undergoing radiotherapy. Previously, nimorazole has been approved for use as an anti-protozoal agent and has been launched worldwide. Nimorazole, for the treatment of head and neck cancer patients undergoing radiotherapy received orphan designation by EMA in 2011.
Nimorazole is an antimicrobial with activity against anaerobic bacteria and protozoa. Its actions and properties are similar to metronidazole. It has also been used in trials studying the treatment of Hypoxia, Radiotherapy, Hypoxic Modification, Gene Profile, Gene Signature, and Head and Neck Squamous Cell Carcinoma, among others. Azanta is developing, nimorazole, as an oral hypoxic radio-sensitiser for the treatment of patients with head and neck cancer who are undergoing radiotherapy. Previously, nimorazole has been approved for use as an anti-protozoal agent and has been launched worldwide. Nimorazole, for the treatment of head and neck cancer patients undergoing radiotherapy received orphan designation by EMA in 2011.