{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Acolbifene, the active metabolite of EM-800, was identified as a pure antagonist that acts on both activation domains of the ERs. It is in Phase III clinical trials for the prevention of breast cancer and vasomotor symptoms (Hot flush) in postmenopausal women. Most commonly reported adverse events included irregular menses, leg/muscle cramps, diarrhea, and hot flashes. No serious adverse events were reported.
Status:
Investigational
Source:
NCT01167244: Phase 2 Interventional Completed Non-Small-Cell Lung Carcinoma
(2010)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
BMS-690514 is a potent, reversible oral inhibitor of epidermal growth factor receptor (EGFR/HER-1), HER-2 and -4, and vascular endothelial growth factor receptors (VEGFRs)-1 to -3 offering targeted inhibition of tumour growth and vascularisation in a single agent. Bristol-Myers Squibb was developing BMS 690514, as an oral treatment for cancer. BMS-690514 had being in phase II for the treatment of breast cancer; non-small cell lung cancer, but later these studies were discontinued.
Status:
Investigational
Source:
NCT00151736: Phase 2 Interventional Terminated Chronic Lymphocytic Leukemia
(2004)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
R-etodolac (SDX-101) is the non-cyclooxygenase 2-inhibiting R-enantiomer of the non-steroid anti-inflammatory drug etodolac (1,8-diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-acetic acid). The absolute configuration of the enantiomer is R-(-)-etodolac. R-etodolac specifically bound retinoid X receptor (RXRalpha), inhibited RXRalpha transcriptional activity, and induced its degradation by a ubiquitin and proteasome-dependent pathway. In addition R-etodolac can disrupt the beta-catenin signaling pathway. R-etodolac exerts antineoplastic properties. R-etodolac was in phase 2 studies for the treatment of hematologic malignancies however development was discontinued.
Status:
Investigational
Source:
NCT01931241: Phase 1 Interventional Unknown status Hypercholesterolemia
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Hyodeoxycholic acid, also known as HDCA, is a secondary bile acid. Natural 6alpha-hydroxylated bile acids are receptor-specific activators of nuclear liver X receptor alpha (LXRalpha), a nuclear receptor regulating the expression of the cholesterol 7alpha-hydroxylase gene. AHRO-001 (Hyodeoxycholic acid) is in phase I clinical trials for the treatment of atherosclerosis. Through a complex signaling processes utilizing LXR receptors, the compound is designed to increase the efficiency of cholesterol efflux using the HDL cells, which act on all cholesterol in the arterial circulation as well as in the lipid core of plaque deposits in the artery walls. Use of AHRO-001 has shown no adverse effects on morbidity, mortality or toxicity and has been well tolerated at high doses.
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Acteoside (verbsacoside) is the one of the main active phenylethanoid glycosides from Cistanche deserticola, Lantana camara and some others herbs. It is known to have antioxidant and neuroprotective activity, and herbs containing it are used to enhance memory and can be studied for the treatment of Alzheimer's disease. It is known, that amyloid fibrils accumulation in cerebral can easily lead to neurodegenerative disorders. Acteoside has been reported to inhibit Aβ42 aggregation by activating nuclear translocation of the transcription factor NF-E2-related factor 2 (Nrf2), increasing heme oxygenase-1 (HO-1) expression. It has also been shown that acteoside could decrease nitric oxide synthase (NOS) activity and caspase-3 expression. Acteoside is a natural antioxidant product unlike other anti-tumor compounds, is an inhibitor of protein kinase C (PKC). In addition Reh-acteoside, a general acteoside of Rehmannia leaves was studied in phase 2/3 clinical trials for patients with IgA nephropathy.
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Cucurbitacin I (JSI-124) is a novel selective triterpenoid that acts as a potent inhibitor of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway with anti-proliferative and anti-tumor properties. Cucurbitacin I specifically suppresses levels of tyrosine phosphorylated STAT3 in v-Src-transformed NIH 3T3 cells and in A549 cells (IC50 = 500 nM) resulting in inhibition of STAT3 DNA binding and reduced STAT3-mediated gene transcription. It also suppresses JAK2 phosphorylation but does not affect Src, ERK, JNK or Akt. In nude mice, cucurbitacin I (1 mg/kg/day) suppressed the growth of various tumors expressing constitutively active STAT3.1 It promotes the differentiation of dendritic cells and macrophages and enhances the effect of cancer immunotherapy. Cucurbitacin I (1 µM for 2 hours) reduced clonogenicity of nasopharyngeal carcinoma cells in vitro and suppresses tumor growth in mice (1.3 mg/kg).
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
11-NOR-9-CARBOXY-DELTA9-TETRAHYDROCANNABINOL (THC-COOH) is the main the non-psychoactive metabolite of Delta9-Tetrahydrocannabinol. Being most abundant in bodily fluids, it has become an established marker of cannabis consumption in forensic, clinical and environmental analyses. Among the cannabinoids tested as potential inhibitors of the drug efflux transporter P-glycoprotein (Pgp), which is responsible for the multidrug-resistance of a tumour and normal cells, THC-COOH behaved as a substrate and was the most active in stimulating Pgp-dependent ATPase. It displayed analgesic and anti-inflammatory properties apparently by inhibiting cyclooxygenase and 5-lipoxygenase activities. THC-COOH was not an anxiolytic or anxiogenic drug but abolished the anxiogenic behavioral effect of Delta9-Tetrahydrocannabinol.
Status:
US Previously Marketed
Source:
21 CFR 310.545(a)(14) oral health care cresol
Source URL:
First approved in 2020
Source:
21 CFR 333A
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
P-Cresol is an end product of protein breakdown and also it is a fermentation metabolite of tyrosine. The mechanisms underlying colonic carbohydrate and protein fermentation, responsible for the generation of p-cresol, are only partially understood. After absorption, the majority of p-cresol is conjugated to form p-cresyl sulphate. There is clear evidence, both in vitro and in vivo, that accumulation of conjugated fermentation metabolites is correlated with clinical important endpoints. In renal failure, the colonic generation rate of p-cresol is markedly elevated. Free p-cresol is an independent predictor for mortality in hemodialysis patients. The accumulation of p-cresol increases the cardiovascular risk of chronic kidney disease (CKD) patients. It was shown, that p-cresol l triggered autophagic renal proximal tubular cells death via JNK-mediated p62 accumulation and then activated caspase 8-dependent cell death pathway. Thus p-cresol can be considered as one of the key events causing progression of CKD, which might affect drug disposition in CKD cases.
Status:
US Previously Marketed
Source:
ZURAMPIC by IRONWOOD PHARMS INC
(2015)
Source URL:
First approved in 2015
Source:
ZURAMPIC by IRONWOOD PHARMS INC
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Lesinurad (brand name Zurampic) is a urate transporter inhibitor for treating hyperuricemia associated with gout in patients who have not achieved target serum uric acid levels with a xanthine oxidase inhibitor alone. In gout patients, Lesinurad lowered serum uric acid levels and increased renal clearance and fractional excretion of uric acid. Following single and multiple oral doses of Lesinurad to gout patients, dose-dependent decreases in serum uric acid levels and increases in urinary uric acid excretion were observed. Lesinurad reduces serum uric acid levels by inhibiting the function of transporter proteins involved in uric acid reabsorption in the kidney. Lesinurad inhibited the function of two apical transporters responsible for uric acid reabsorption, uric acid transporter 1 (URAT1) and organic anion transporter 4 (OAT4), with IC50 values of 7.3 and 3.7 µM, respectively. URAT1 is responsible for the majority of the reabsorption of filtered uric acid from the renal tubular lumen. OAT4 is a uric acid transporter associated with diuretic-induced hyperuricemia. Lesinurad does not interact with the uric acid reabsorption transporter SLC2A9 (Glut9), located on the basolateral membrane of the proximal tubule cell. Based on in vitro studies, lesinurad is an inhibitor of OATP1B1, OCT1, OAT1, and OAT3; however, lesinurad is not an in vivo inhibitor of these transporters. In vivo drug interaction studies indicate that lesinurad does not decrease the renal clearance of furosemide (substrate of OAT1/3), or affect the exposure of atorvastatin (substrate of OATP1B1) or metformin (substrate of OCT1). Based on in vitro studies, lesinurad has no relevant effect on P-glycoprotein.
Status:
US Previously Marketed
Source:
POTIGA by GLAXOSMITHKLINE
(2011)
Source URL:
First approved in 2011
Source:
POTIGA by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Ezogabine (U.S. adopted name) or retigabine (international nonproprietary name) is one of a family of aminopyrroles with anticonvulsant activity. It is used as an adjunctive treatment for partial epilepsies in treatment-experienced adult patients. The drug was approved by the European Medicines Agency under the trade name Trobalt and by the United States Food and Drug Administration (FDA), under the trade name Potiga. The mechanism by which ezogabine exerts its therapeutic effects has not been fully elucidated. In vitro studies indicate that ezogabine enhances transmembrane potassium currents mediated by the KCNQ (Kv7.2 to 7.5) family of ion channels. By activating KCNQ channels, ezogabine is thought to stabilize the resting membrane potential and reduce brain excitability. This mechanism of action is unique among antiepileptic drugs, and may hold promise for the treatment of other neurologic conditions, including migraine, tinnitus and neuropathic pain. In vitro studies suggest that ezogabine may also exert therapeutic effects through augmentation of GABA-mediated currents.