U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 51 - 60 of 446 results

Zonisamide is an antiseizure drug chemically classified as a sulfonamide and unrelated to other antiseizure agents. The precise mechanism by which zonisamide exerts its antiseizure effect is unknown, although it is believed that the drug blocks sodium and calcium channels, which leads to the suppression of neuronal hypersynchronization (i.e. convulsions). Sonisamide has also been found to potentiate dopaminergic and serotonergic neurotransmission but does not appear to potentiate syanptic activity by GABA (gamma amino butyric acid). Zonisamide binds to sodium channels and voltage sensitive calcium channels, which suppresses neuronal depolarization and hypersynchronization. Zonisamide also inhibits carbonic anhydrase to a weaker extent, but such an effect is not thought to contribute substantially to the drug's anticonvulsant activity. Zonisamide is approved in the United States, United Kingdom, and Australia for adjunctive treatment of partial seizures in adults and in Japan for both adjunctive and monotherapy for partial seizures (simple, complex, secondarily generalized), generalized (tonic, tonic-clonic (grand mal), and atypical absence) and combined seizures.
Moxidectin is a semi-synthetic methoxime derivative of LL F-2924α, commonly referred as F-alpha or nemadectin F-alpha is a product of fermentation of Streptomyces cyaneogriseus subsp. noncyanogenus, a bacterial organism isolated in 1983 from a sample of sand from Victoria, Australia. Moxidectin is a potent, broad-spectrum endectocide with activity against a wide range of nematodes, insects and acari. The compound acts by binding to ligand-gated chloride channels, more specifically the subtypes that are gamma-aminobutyric (GABA) mediated and glutamate-gated. The consequence of Moxidectin binding and activation is an increased permeability, leading to an influx of chloride ions and flaccid paralysis of the parasite leading to death. The macrocyclic lactones probably act by binding to and opening glutamate-gated chloride channels found only in neurons and myocytes of invertebrates. Because moxidectin is very lipophilic, it becomes highly concentrated in the serum. When the concentration of moxidectin in the serum is high, moxidectin is able to cross the blood-brain barrier. Once it is in the central nervous system, a macrocyclic lactone stimulates the synaptic secretion of the inhibitory neurotransmitter, GABA. By binding at the receptor site, GABA causes influx of chloride ions into neurons, causing the neurons to become hyperpolarised, which in turn, causes diminution in neuronal activity, resulting in sedation and relaxation of the skeletal muscles. Signs displayed by foals with moxidectin toxicity included dyspnoea, depression, ataxia, weakness, coma and seizures. In a Phase 3 study compared the efficacy, safety and tolerability of moxidectin and ivermectin in subjects infected with Onchocerca volvulus, which is the parasite that causes river blindness.
Imiquimod is an immune response modifier that acts as a toll-like receptor 7 agonist. Imiquimod is commonly used topically to treat warts on the skin of the genital and anal areas. Imiquimod does not cure warts, and new warts may appear during treatment. Imiquimod does not fight the viruses that cause warts directly, however, it does help to relieve and control wart production. It is not used on warts inside the vagina, penis, or rectum. Imiquimod is also used to treat a skin condition of the face and scalp called actinic keratoses. Imiquimod can also be used to treat certain types of skin cancer called superficial basal cell carcinoma. Imiquimod is particularly useful on areas where surgery or other treatments may be difficult, complicated or otherwise undesirable, especially the face and lower legs. Imiquimod's mechanism of action is via stimulation of innate and acquired immune responses, which ultimately leads to inflammatory cell infiltration within the field of drug application followed by apoptosis of diseased tissue. Imiquimod does not have direct antiviral activity. Studies of mice show that imiquimod may induce cytokines, including interferon-alpha (IFNA) as well as several IFNA genes (IFNA1, IFNA2, IFNA5, IFNA6, and IFNA8) as well as the IFNB gene. Imiquimod also induced the expression of interleukin (IL)-6, IL-8, and tumor necrosis factor alpha genes. In the treatment of basal cell carcinoma, Imiquimod appears to act as a toll-like receptor-7 agonist, and is thought to exert its anti-tumor effect via modification of the immune response and stimulation of apoptosis in BCC cells. In treating basal cell carcinoma it may increase the infiltration of lymphocytes, dendritic cells, and macrophages into the tumor lesion. Imiquimod is used for the topical treatment of clinically typical, nonhyperkeratotic, nonhypertrophic actinic keratoses on the face or scalp in immunocompetent adults. Also indicated for the treatment of external genital and perianal warts/condyloma acuminata in individuals 12 years old and above.

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Letrozole (trade name Femara), a nonsteroidal aromatase inhibitor. Femara is indicated for the adjuvant treatment of postmenopausal women with hormone receptor positive early breast cancer. Also is indicated for the extended adjuvant treatment of early breast cancer in postmenopausal women, who have received 5 years of adjuvant tamoxifen therapy. Femara has to be used for first-line treatment of postmenopausal women with hormone receptor positive or unknown, locally advanced or metastatic breast cancer and for the treatment of advanced breast cancer in postmenopausal women with disease progression following antiestrogen therapy. Treatment of breast cancer thought to be hormonally responsive (i.e., estrogen and/or progesterone receptor positive or receptor unknown) has included a variety of efforts to decrease estrogen levels (ovariectomy, adrenalectomy, hypophysectomy) or inhibit estrogen effects (antiestrogens and progestational agents). These interventions lead to decreased tumor mass or delayed progression of tumor growth in some women. In postmenopausal women, estrogens are mainly derived from the action of the aromatase enzyme, which converts adrenal androgens (primarily androstenedione and testosterone) to estrone and estradiol. The suppression of estrogen biosynthesis in peripheral tissues and in the cancer tissue itself can therefore be achieved by specifically inhibiting the aromatase enzyme. Letrozole inhibits the conversion of androgens to estrogens. Letrozole selectively inhibits gonadal steroidogenesis but has no significant effect on adrenal mineralocorticoid or glucocorticoid synthesis. Letrozole inhibits the aromatase enzyme by competitively binding to the heme of the cytochrome P450 subunit of the enzyme, resulting in a reduction of estrogen biosynthesis in all tissues. Treatment of women with letrozole significantly lowers serum estrone, estradiol and estrone sulfate and has not been shown to significantly affect adrenal corticosteroid synthesis, aldosterone synthesis, or synthesis of thyroid hormones. Letrozole is rapidly and completely absorbed from the gastrointestinal tract and absorption is not affected by food. Metabolism to a pharmacologically inactive carbinol metabolite (4,4'¬ methanol-bisbenzonitrile) and renal excretion of the glucuronide conjugate of this metabolite is the major pathway of letrozole clearance. In human microsomes with specific CYP isozyme activity, CYP3A4 metabolized letrozole to the carbinol metabolite while CYP2A6 formed both this metabolite and its ketone analog. In human liver microsomes, letrozole strongly inhibited CYP2A6 and moderately inhibited CYP2C19. The most common side effects are sweating, hot flashes, arthralgia (joint pain), and fatigue
Ritonavir is a protease inhibitor with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Ritonavir binds to the protease active site and inhibits the activity of the enzyme. It is FDA approved for the treatment of HIV-1 infection. In patients receiving medications metabolized by CYP3A or initiation of medications metabolized by CYP3A in patients already receiving Ritonavir, may increase plasma concentrations of medications metabolized by CYP3A. The most frequently reported adverse drug reactions among patients receiving Ritonavir alone or in combination with other antiretroviral drugs were gastrointestinal (including diarrhea, nausea, vomiting, abdominal pain (upper and lower)), neurological disturbances (including paresthesia and oral paresthesia), rash, and fatigue/asthenia.
Docetaxel was protected by patents (U.S. patent and European patent) which were owned by Sanofi-Aventis, and so was available only under the Taxotere brand name internationally. The European patent expired in 2010. Docetaxel is a clinically well-established anti-mitotic chemotherapy medication used for the treatment of patients with locally advanced or metastatic breast cancer after failure of prior chemotherapy. Also used as a single agent in the treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of prior platinum-based chemotherapy. It is also used in combination with prednisone, in the treatment of patients with androgen independent (hormone refractory) metastatic prostate cancer. Furthermore, docetaxel has uses in the treatment of gastric adenocarcinoma and head and neck cancer. Docetaxel interferes with the normal function of microtubule growth. Whereas drugs like colchicine cause the depolymerization of microtubules in vivo, docetaxel arrests their function by having the opposite effect; it hyper-stabilizes their structure. This destroys the cell's ability to use its cytoskeleton in a flexible manner. Specifically, docetaxel binds to the β-subunit of tubulin. Tubulin is the "building block" of mictotubules, and the binding of docetaxel locks these building blocks in place. The resulting microtubule/docetaxel complex does not have the ability to disassemble. This adversely affects cell function because the shortening and lengthening of microtubules (termed dynamic instability) is necessary for their function as a transportation highway for the cell. Chromosomes, for example, rely upon this property of microtubules during mitosis. Further research has indicated that docetaxel induces programmed cell death (apoptosis) in cancer cells by binding to an apoptosis stopping protein called Bcl-2 (B-cell leukemia 2) and thus arresting its function.

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Anastrozole (marketed under the trade name Arimidex by AstraZeneca) is a drug indicated in the treatment of breast cancer in post-menopausal women. It is used both in adjuvant therapy (i.e. following surgery) and in metastatic breast cancer. It decreases the amount of estrogens that the body makes. Anastrozole belongs in the class of drugs known as aromatase inhibitors. It inhibits the enzyme aromatase, which is responsible for converting androgens (produced by women in the adrenal glands) to estrogens. The growth of many cancers of the breast is stimulated or maintained by estrogens. In postmenopausal women, estrogens are mainly derived from the action of the aromatase enzyme, which converts adrenal androgens (primarily androstenedione and testosterone) to estrone and estradiol. The suppression of estrogen biosynthesis in peripheral tissues and in the cancer tissue itself can therefore be achieved by specifically inhibiting the aromatase enzyme. Anastrozole is a selective non-steroidal aromatase inhibitor. It significantly lowers serum estradiol concentrations and has no detectable effect on formation of adrenal corticosteroids or aldosterone.
Salmeterol is a long-acting beta2-adrenergic agonist. Although beta2-adrenoceptors are the predominant adrenergic receptors in bronchial smooth muscle and beta1-adrenoceptors are the predominant receptors in the heart, there are also beta2-adrenoceptors in the human heart comprising 10% to 50% of the total beta-adrenoceptors. The precise function of these is not yet established, but they raise the possibility that even highly selective beta2-agonists may have cardiac effects. It is FDA approved for the treatment of asthma, prevention of exercise-induced bronchospasm, maintenance treatment of chronic obstructive pulmonary disease. Common adverse reactions include musculoskeletal pain, headache, influenza, nasal/sinus congestion, pharyngitis, rhinitis, tracheitis/bronchitis, cough, throat irritation, viral respiratory infection. Salmeterol should be administered with extreme caution to patients being treated with monoamine oxidase inhibitors or tricyclic antidepressants, or within 2 weeks of discontinuation of such agents, because the action of salmeterol on the vascular system may be potentiated by these agents. Coadministration of salmeterol and ketoconazole was associated with more frequent increases in QTc duration compared with salmeterol and placebo administration.
Status:
First approved in 1994

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Vinorelbine (trade name Navelbine) is a semi-synthetic vinca-alkaloid with a broad spectrum of anti-tumour activity. Vinorelbine is a mitotic spindle poison that impairs chromosomal segregation during mitosis. It blocks cells at G2/M. Microtubules (derived from polymers of tubulin) are the principal target of vinorelbine. Vinorelbine was developed by Pierre Fabre under licence from the CNRS in France. NAVELBINE (vinorelbine tartrate) as a single agent or in combination is indicated for the first line treatment of non small cell lung cancer and advanced breast cancer.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Tacrolimus, previously known as FK506, is the active ingredient in Prograf. Tacrolimus is a macrolide immunosuppressant produced by Streptomyces tsukubaensis. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex interacts with and inhibits calcineurin thus inhibiting both T-lymphocyte signal transduction and IL-2 transcription. Tacrolimus inhibits T-lymphocyte activation, although the exact mechanism of action is not known. Experimental evidence suggests that tacrolimus binds to an intracellular protein, FKBP-12. A complex of tacrolimus-FKBP-12, calcium, calmodulin, and calcineurin is then formed and the phosphatase activity of calcineurin inhibited. This effect may prevent the dephosphorylation and translocation of nuclear factor of activated T-cells (NF-AT), a nuclear component thought to initiate gene transcription for the formation of lymphokines (such as interleukin-2, gamma interferon). The net result is the inhibition of T-lymphocyte activation (i.e., immunosuppression). Prograf is indicated for the prophylaxis of organ rejection in patients receiving allogeneic liver transplants, kidney transplants, heart transplants. It has also been used in a topical preparation in the treatment of severe atopic dermatitis.