{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Previously Marketed
Source:
CONJUPRI by CSPC OUYI
(2019)
Source URL:
First approved in 1992
Source:
NDA212895
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed
Source:
CONJUPRI by CSPC OUYI
(2019)
Source URL:
First approved in 1992
Source:
NDA212895
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed
Source:
CONJUPRI by CSPC OUYI
(2019)
Source URL:
First approved in 1992
Source:
NDA212895
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed
Source:
CONJUPRI by CSPC OUYI
(2019)
Source URL:
First approved in 1992
Source:
NDA212895
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed
Source:
HALFAN by GLAXOSMITHKLINE
(1992)
Source URL:
First approved in 1992
Source:
HALFAN by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Targets:
Halofantrine is a blood schizonticidal antimalarial agent with no apparent action on the sporozoite, gametocyte or hepatic stages of the infection. It is used only to treat but not to prevent malaria. Has been marketed by GlaxoSmithKline as HALFAN (halofantrine hydrochloride) in 250 mg tablets indicated for the treatment of adults who can tolerate oral medication and who have mild to moderate malaria (equal to or less than 100,000 parasites/mm3) caused by Plasmodium falciparum or Plasmodium vivax. Among side effects is cardiac arrhythmia. It belongs to the phenanthrene class of compounds that includes quinine and lumefantrine. It was reported that halofantrine binds to hematin in vitro (crystal structure of the complex) and to to plasmpesin, a haemoglobin degrading enzyme unique to the malarial parasites.
Status:
US Previously Marketed
Source:
CONJUPRI by CSPC OUYI
(2019)
Source URL:
First approved in 1992
Source:
NDA212895
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed
Source:
CONJUPRI by CSPC OUYI
(2019)
Source URL:
First approved in 1992
Source:
NDA212895
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed
Source:
CONJUPRI by CSPC OUYI
(2019)
Source URL:
First approved in 1992
Source:
NDA212895
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed
Source:
HALFAN by GLAXOSMITHKLINE
(1992)
Source URL:
First approved in 1992
Source:
HALFAN by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Halofantrine is a blood schizonticidal antimalarial agent with no apparent action on the sporozoite, gametocyte or hepatic stages of the infection. It is used only to treat but not to prevent malaria. Has been marketed by GlaxoSmithKline as HALFAN (halofantrine hydrochloride) in 250 mg tablets indicated for the treatment of adults who can tolerate oral medication and who have mild to moderate malaria (equal to or less than 100,000 parasites/mm3) caused by Plasmodium falciparum or Plasmodium vivax. Among side effects is cardiac arrhythmia. It belongs to the phenanthrene class of compounds that includes quinine and lumefantrine. It was reported that halofantrine binds to hematin in vitro (crystal structure of the complex) and to to plasmpesin, a haemoglobin degrading enzyme unique to the malarial parasites.
Status:
US Previously Marketed
Source:
PINDAC by LEO PHARM
(1989)
Source URL:
First approved in 1989
Source:
PINDAC by LEO PHARM
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Pinacidil is a clinically effective vasodilator used for the treatment of hypertension.