U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 91 - 100 of 149 results

Medroxyprogesterone acetate (INN, USAN, BAN), also known as 17α-hydroxy-6α-methylprogesterone acetate, and commonly abbreviated as MPA, is a steroidal progestin, a synthetic variant of the human hormone progesterone. Medroxyprogesterone acetate (MPA) administered orally or parenterally in the recommended doses to women with adequate endogenous estrogen, transforms proliferative into secretory endometrium. Androgenic and anabolic effects have been noted, but the drug is apparently devoid of significant estrogenic activity. While parenterally administered MPA inhibits gonadotropin production, which in turn prevents follicular maturation and ovulation, available data indicate that this does not occur when the usually recommended oral dosage is given as single daily doses. MPA is a more potent derivative of its parent compound medroxyprogesterone (MP). While medroxyprogesterone is sometimes used as a synonym for medroxyprogesterone acetate, what is normally being administered is MPA and not MP. Used as a contraceptive and to treat secondary amenorrhea, abnormal uterine bleeding, pain associated with endometriosis, endometrial and renal cell carcinomas, paraphilia in males, GnRH-dependent forms of precocious puberty, as well as to prevent endometrial changes associated with estrogens. Progestins diffuse freely into target cells in the female reproductive tract, mammary gland, hypothalamus, and the pituitary and bind to the progesterone receptor. Once bound to the receptor, progestins slow the frequency of release of gonadotropin releasing hormone (GnRH) from the hypothalamus and blunt the pre-ovulatory LH surge.
Warfarin is an anticoagulant drug normally used to prevent blood clot formation as well as migration. Warfarin is marketed under the brand name Coumadin among others. Coumadin (crystalline warfarin sodium) is an anticoagulant which acts by inhibiting vitamin K-dependent coagulation factors. Chemically, it is 3-(α-acetonylbenzyl)-4-hydroxycoumarin and is a racemic mixture of the R- and S-enantiomers. Coumadin is indicated for the prophylaxis and/or treatment of venous thrombosis and its extension, and pulmonary embolism. It is also indicated for the prophylaxis and/or treatment of the thromboembolic complications associated with atrial fibrillation and/or cardiac valve replacement. Warfarin is thought to interfere with clotting factor synthesis by inhibition of the C1 subunit of the vitamin K epoxide reductase (VKORC1) enzyme complex, thereby reducing the regeneration of vitamin K1 epoxide. The degree of depression is dependent upon the dosage administered and, in part, by the patient’s VKORC1 genotype. Therapeutic doses of warfarin decrease the total amount of the active form of each vitamin K dependent clotting factor made by the liver by approximately 30% to 50%.
Warfarin is an anticoagulant drug normally used to prevent blood clot formation as well as migration. Warfarin is marketed under the brand name Coumadin among others. Coumadin (crystalline warfarin sodium) is an anticoagulant which acts by inhibiting vitamin K-dependent coagulation factors. Chemically, it is 3-(α-acetonylbenzyl)-4-hydroxycoumarin and is a racemic mixture of the R- and S-enantiomers. Coumadin is indicated for the prophylaxis and/or treatment of venous thrombosis and its extension, and pulmonary embolism. It is also indicated for the prophylaxis and/or treatment of the thromboembolic complications associated with atrial fibrillation and/or cardiac valve replacement. Warfarin is thought to interfere with clotting factor synthesis by inhibition of the C1 subunit of the vitamin K epoxide reductase (VKORC1) enzyme complex, thereby reducing the regeneration of vitamin K1 epoxide. The degree of depression is dependent upon the dosage administered and, in part, by the patient’s VKORC1 genotype. Therapeutic doses of warfarin decrease the total amount of the active form of each vitamin K dependent clotting factor made by the liver by approximately 30% to 50%.
Warfarin is an anticoagulant drug normally used to prevent blood clot formation as well as migration. Warfarin is marketed under the brand name Coumadin among others. Coumadin (crystalline warfarin sodium) is an anticoagulant which acts by inhibiting vitamin K-dependent coagulation factors. Chemically, it is 3-(α-acetonylbenzyl)-4-hydroxycoumarin and is a racemic mixture of the R- and S-enantiomers. Coumadin is indicated for the prophylaxis and/or treatment of venous thrombosis and its extension, and pulmonary embolism. It is also indicated for the prophylaxis and/or treatment of the thromboembolic complications associated with atrial fibrillation and/or cardiac valve replacement. Warfarin is thought to interfere with clotting factor synthesis by inhibition of the C1 subunit of the vitamin K epoxide reductase (VKORC1) enzyme complex, thereby reducing the regeneration of vitamin K1 epoxide. The degree of depression is dependent upon the dosage administered and, in part, by the patient’s VKORC1 genotype. Therapeutic doses of warfarin decrease the total amount of the active form of each vitamin K dependent clotting factor made by the liver by approximately 30% to 50%.
Warfarin is an anticoagulant drug normally used to prevent blood clot formation as well as migration. Warfarin is marketed under the brand name Coumadin among others. Coumadin (crystalline warfarin sodium) is an anticoagulant which acts by inhibiting vitamin K-dependent coagulation factors. Chemically, it is 3-(α-acetonylbenzyl)-4-hydroxycoumarin and is a racemic mixture of the R- and S-enantiomers. Coumadin is indicated for the prophylaxis and/or treatment of venous thrombosis and its extension, and pulmonary embolism. It is also indicated for the prophylaxis and/or treatment of the thromboembolic complications associated with atrial fibrillation and/or cardiac valve replacement. Warfarin is thought to interfere with clotting factor synthesis by inhibition of the C1 subunit of the vitamin K epoxide reductase (VKORC1) enzyme complex, thereby reducing the regeneration of vitamin K1 epoxide. The degree of depression is dependent upon the dosage administered and, in part, by the patient’s VKORC1 genotype. Therapeutic doses of warfarin decrease the total amount of the active form of each vitamin K dependent clotting factor made by the liver by approximately 30% to 50%.
Estradiol benzoate is the synthetic benzoate ester of estradiol, a steroid sex hormone vital to the maintenance of fertility and secondary sexual characteristics in females. As the primary, most potent estrogen hormone produced by the ovaries, estradiol binds to and activates specific nuclear receptors. This agent exhibits mild anabolic and metabolic properties, and increases blood coagulability. Although estradiol benzoate is not approved by the FDA for use in humans in the United States, it is approved for veterinary use as a subdermal implant both alone (CELERIN®) and in combination with the anabolic steroid trenbolone acetate (SYNOVEX® Plus).
Estradiol benzoate is the synthetic benzoate ester of estradiol, a steroid sex hormone vital to the maintenance of fertility and secondary sexual characteristics in females. As the primary, most potent estrogen hormone produced by the ovaries, estradiol binds to and activates specific nuclear receptors. This agent exhibits mild anabolic and metabolic properties, and increases blood coagulability. Although estradiol benzoate is not approved by the FDA for use in humans in the United States, it is approved for veterinary use as a subdermal implant both alone (CELERIN®) and in combination with the anabolic steroid trenbolone acetate (SYNOVEX® Plus).
Estradiol benzoate is the synthetic benzoate ester of estradiol, a steroid sex hormone vital to the maintenance of fertility and secondary sexual characteristics in females. As the primary, most potent estrogen hormone produced by the ovaries, estradiol binds to and activates specific nuclear receptors. This agent exhibits mild anabolic and metabolic properties, and increases blood coagulability. Although estradiol benzoate is not approved by the FDA for use in humans in the United States, it is approved for veterinary use as a subdermal implant both alone (CELERIN®) and in combination with the anabolic steroid trenbolone acetate (SYNOVEX® Plus).
Estradiol benzoate is the synthetic benzoate ester of estradiol, a steroid sex hormone vital to the maintenance of fertility and secondary sexual characteristics in females. As the primary, most potent estrogen hormone produced by the ovaries, estradiol binds to and activates specific nuclear receptors. This agent exhibits mild anabolic and metabolic properties, and increases blood coagulability. Although estradiol benzoate is not approved by the FDA for use in humans in the United States, it is approved for veterinary use as a subdermal implant both alone (CELERIN®) and in combination with the anabolic steroid trenbolone acetate (SYNOVEX® Plus).
Estradiol benzoate is the synthetic benzoate ester of estradiol, a steroid sex hormone vital to the maintenance of fertility and secondary sexual characteristics in females. As the primary, most potent estrogen hormone produced by the ovaries, estradiol binds to and activates specific nuclear receptors. This agent exhibits mild anabolic and metabolic properties, and increases blood coagulability. Although estradiol benzoate is not approved by the FDA for use in humans in the United States, it is approved for veterinary use as a subdermal implant both alone (CELERIN®) and in combination with the anabolic steroid trenbolone acetate (SYNOVEX® Plus).