U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 791 - 800 of 810 results

Subitramine is a potent inhibitor of monoamines (serotonin, dopamine, noradrenaline) reuptake that was approved by FDA for the treatmen of obesity. Sibutramine is metabolized to metabolites M1 and M2 which are more active toward the monoamine transporters.The drug was withdrawn from the market because of clinical trial data indicating an increased risk of heart attack and stroke. It was sold under a variety of brand names including Reductil, Meridia and Sibutrex.
Status:
US Previously Marketed
First approved in 1996

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Indinavir is an antiretroviral drug for the treatment of HIV infection. Indinavir is a protease inhibitor with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Protease inhibitors block the part of HIV called protease. HIV-1 protease is an enzyme required for the proteolytic cleavage of the viral polyprotein precursors into the individual functional proteins found in infectious HIV-1. Indinavir binds to the protease active site and inhibits the activity of the enzyme. This inhibition prevents cleavage of the viral polyproteins resulting in the formation of immature non-infectious viral particles. Protease inhibitors are almost always used in combination with at least two other anti-HIV drugs.
Status:
US Previously Marketed
First approved in 1996

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Indinavir is an antiretroviral drug for the treatment of HIV infection. Indinavir is a protease inhibitor with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Protease inhibitors block the part of HIV called protease. HIV-1 protease is an enzyme required for the proteolytic cleavage of the viral polyprotein precursors into the individual functional proteins found in infectious HIV-1. Indinavir binds to the protease active site and inhibits the activity of the enzyme. This inhibition prevents cleavage of the viral polyproteins resulting in the formation of immature non-infectious viral particles. Protease inhibitors are almost always used in combination with at least two other anti-HIV drugs.
Status:
US Previously Marketed
First approved in 1996

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Indinavir is an antiretroviral drug for the treatment of HIV infection. Indinavir is a protease inhibitor with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Protease inhibitors block the part of HIV called protease. HIV-1 protease is an enzyme required for the proteolytic cleavage of the viral polyprotein precursors into the individual functional proteins found in infectious HIV-1. Indinavir binds to the protease active site and inhibits the activity of the enzyme. This inhibition prevents cleavage of the viral polyproteins resulting in the formation of immature non-infectious viral particles. Protease inhibitors are almost always used in combination with at least two other anti-HIV drugs.
Status:
US Previously Marketed

Class (Stereo):
CHEMICAL (ABSOLUTE)

Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed

Class (Stereo):
CHEMICAL (ABSOLUTE)

Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed

Class (Stereo):
CHEMICAL (ABSOLUTE)

Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed

Class (Stereo):
CHEMICAL (ABSOLUTE)

Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed

Class (Stereo):
CHEMICAL (ABSOLUTE)

Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.
Status:
US Previously Marketed

Class (Stereo):
CHEMICAL (ABSOLUTE)

Levalmodipine (S-amlodipine) is an active enantiomer of amlodipine, a calcium antagonist that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that S-amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. S-Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular smooth muscle cells than on cardiac muscle cells. Enantiomerically pure S-amlodipine is marketed in some countries worldwide, while racemate, containing active S-enantiomer an inactive R-enantiomer is marketed in the USA and indicated for the treatment of hypertension and coronary artery disease.

Showing 791 - 800 of 810 results