{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2023)
Source:
NDA216951
(2023)
Source URL:
First approved in 2023
Source:
NDA216951
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Daprodustat (GSK1278863) is a low nanomolar hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD) inhibitor, that increases HIF stability and action. In preclinical studies, Daprodustat stabilizes HIFα in cell lines, resulting in the production of increased levels of erythropoietin (EPO). In normal mice, a single dose of Daprodustat induced significant increases in circulating plasma EPO but only minimal increases in plasma vascular endothelial growth factor (VEGF-A) concentrations. Daprodustat significantly increased reticulocytes and red cell mass parameters in pre-clinical species following once-daily oral administration and has demonstrated an acceptable nonclinical toxicity profile supporting continued clinical development. In a phase 1 study, Daprodustat was well tolerated and increased erythropoietin (EPO) levels in apparently healthy individuals proportional to dose. In phase 2a studies in non–dialysis-dependent chronic kidney disease (NDD CKD) and end-stage renal disease Daprodustat 4-10 mg once-daily produced the dose-dependent increase in hemoglobin relative to placebo. The Phase III programme for the drug includes two studies evaluating its safety and efficacy compared to recombinant human erythropoietin in dialysis-dependent subjects with anemia associated with CKD (ASCEND-D) and in non-dialysis dependent patients with the condition (ASCEND-ND).
Status:
US Approved Rx
(2023)
Source:
NDA217564
(2023)
Source URL:
First approved in 2023
Source:
NDA217564
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Fruquintinib is a highly selective small molecule drug candidate that has been shown to inhibit VEGFR 24 hours a day via an oral dose, with lower off-target toxicities compared to other targeted therapies. Mechanistically, Fruquintinib selectively blocks VEGF-mediated receptor autophosphorylation, thus inhibiting endothelial cell proliferation and migration. In preclinical in vitro studies using a 32P-ATP assay, Fruquintinib selectively inhibited the tyrosine kinase activity associated with VEGFR-1, VEGFR-2, and VEGFR-3 at concentrations in the nanomolar range, but showed little inhibition against a panel of 254 kinases related to cell cycle or cell proliferation, including cyclin-dependent kinase (CDK1, 2, 5), the epidermal growth factor receptor (EGFR), the mesenchymal-epithelial transition factor (c-Met), and platelet-derived growth factor receptor β (PDGFRβ) kinase. In cellular assays, Fruquintinib potently inhibited VEGF-stimulated VEGFR phosphorylation and proliferation in human umbilical vein endothelial cells. Fruquintinib demonstrated potent antiangiogenic effect and anti-tumor activity in xenograft models of colon adenocarcinoma (HT-29), non-small cell lung cancer (NSCLC; NCI-H460), renal clear cell carcinoma (Caki-1), and gastric carcinoma (BGC823) in mice treated for 3 weeks. Fruquintinib is currently under joint development in China by Chi-Med and its partner Eli Lilly and Company (“Lilly”). Chi-Med and Lilly jointly announced top-line results from the FRESCO CRC trial on March 3, 2017. In addition, Fruquintinib is being studied in China in Phase III pivotal trial in non-small cell lung cancer (“NSCLC”), known as FALUCA; and a Phase II study using Fruquintinib combined with Iressa® (gefitinib) in the first-line setting for patients with advanced or metastatic NSCLC.
Status:
US Approved Rx
(2023)
Source:
NDA217677
(2023)
Source URL:
First approved in 2023
Source:
NDA217677
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Nirogacestat (PF-3084014) is a tetralin imidazole gamma-secretase inhibitor. Gamma-secretase, a proteolytic enzyme complex, mediates processing of several integral membrane proteins including amyloid precursor protein and Notch. This compound can inhibit both Notch-related pathway in neoplasia and reduces amyloid-β production. Nirogacestat (PF-3084014) is under development by Pfizer for the treatment of cancer.
Status:
US Approved Rx
(2020)
Source:
NDA212295
(2020)
Source URL:
First approved in 2020
Source:
NDA212295
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Remimazolam is an intravenous benzodiazepine sedative-hypnotic with rapid onset and offset of action. This compound undergoes organ-independent metabolism to an inactive metabolite. Like other benzodiazepines, remimazolam can be reversed with flumazenil to rapidly terminate sedation and anesthesia. Phase I and II clinical trials have shown that remimazolam is safe and effective when used for procedural sedation. Phase III clinical trials have been completed investigating efficacy and safety in patients undergoing bronchoscopy and colonoscopy. The developer of this drug has suggested that intensive care unit sedation (beyond 24 hours) could be another possible indication for further development, since it is unlikely that prolonged infusions or higher doses of remimazolam would result in accumulation and extended effect.
Status:
US Approved Rx
(2020)
Source:
NDA212728
(2020)
Source URL:
First approved in 2020
Source:
NDA212728
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Bristol-Myers Squibb developed Rimegepant, also known as BMS-927711. Rimegepant is a potent, selective, competitive and orally active calcitonin gene-related peptide (CGRP) antagonist in clinical trials for treating migraine. Rimegepant has shown in vivo efficacy without vasoconstrictor effect; it is superior to placebo at several different doses (75 mg, 150 mg, and 300 mg) and has an excellent tolerability profile.
Status:
US Approved Rx
(2020)
Source:
NDA209510
(2020)
Source URL:
First approved in 2020
Source:
NDA209510
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Amisulpride, a benzamide derivative, shows a unique therapeutic profile being atypical antipsychotic. At low doses, it enhances dopaminergic neurotransmission by preferentially blocking presynaptic dopamine D2/D3 autoreceptors. At higher doses, amisupride antagonises postsynaptic dopamine D2 and D3 receptors, preferentially in the limbic system rather than the striatum, thereby reducing dopaminergic transmission. In addition its antagonism at serotonin 5-HT7 receptors likely underlies the antidepressant actions. Amisulpride is approved for clinical use in treating schizophrenia in a number of European countries and also for treating dysthymia, a mild form of depression, in Italy.
Status:
US Approved Rx
(2020)
Source:
NDA212950
(2020)
Source URL:
First approved in 2020
Source:
NDA212950
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Temsavir (BMS-626529) is an attachment inhibitor (AI) in clinical development (administered as prodrug BMS-663068) that binds to HIV-1 gp120. Temsavir displays in vitro activity against HIV-1 envelopes with C-C chemokine receptor type 5 (CCR5-), C-X-C chemokine receptor type 4 (CXCR4), and dual tropism. It also is active against almost all HIV-1 subtypes tested except for subtype CRF01-AE and possibly group O. Temsavir can inhibit both CD4-induced and CD4-independent formation of the "open state" four-stranded gp120 bridging sheet, and the subsequent formation and exposure of the chemokine co-receptor binding site. This unique mechanism of action prevents the initial interaction of HIV-1 with the host CD4+ T cell, and subsequent HIV-1 binding and entry. Temsavir is administered as a phosphonooxymethyl ester prodrug (BMS-663068), which was developed to improve the solubility and dissolution of Temsavir. Temsavir is currently being investigated clinically through the use of the prodrug BMS-663068, and a Phase III study of BMS-663068 in HIV-1-infected treatment-experienced subjects is ongoing (NCT02362503).
Status:
US Approved Rx
(2020)
Source:
NDA211723
(2020)
Source URL:
First approved in 2020
Source:
NDA211723
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Tazemetostat (EPZ-6438) is a selective inhibitor of histone-lysine N-methyltransferase EZH2. The drug is under clinical development (phase II) for the treatment of Diffuse Large B Cell Lymphoma, Malignant Mesothelioma and Synovial Sarcoma.
Status:
US Approved Rx
(2020)
Source:
NDA213036
(2020)
Source URL:
First approved in 2020
Source:
NDA213036
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Sodium artesunate, an artemisinin derivative, is used in malaria treatment. Artesunate, has been licensed in Thailand for the
treatment of falciparum malaria since 1990. It is a potent antimalarial drug that can reduce parasitaemia by 90% within 24 h of administration. Sodium artesunate was first isolated in China, it is a water soluble antimalaria used clinically in China.
Status:
US Approved Rx
(2020)
Source:
NDA212801
(2020)
Source URL:
First approved in 2020
Source:
NDA212801
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Osilodrostat (INN, USAN) (developmental code name LCI-699) is an orally active, non-steroidal corticosteroid biosynthesis inhibitor which is under development by Novartis for the treatment of Cushing's syndrome and pituitary ACTH hypersecretion (a specific subtype of Cushing's syndrome). Osilodrostat specifically acts as a potent and selective inhibitor of aldosterone synthase (CYP11B2) and at higher dosages of 11β-hydroxylase (CYP11B1). Osilodrostat decreases plasma and urinary aldosterone levels and rapidly corrects hypokalemia, in patients with primary aldosteronism and hypertension. At doses ≥1 mg o.d. Osilodrostat markedly increases 11-deoxycortisol plasma levels and blunts ACTH-stimulated cortisol release in ≈20% of patients, consistent with the inhibition of CYP11B1. In patients with resistant hypertension, Osilodrostat produces a non-significant reduction in blood pressure, possibly due to the increase in 11-deoxycortisol levels and the stimulation of the hypothalamic-pituitary-adrenal feedback axis. Because of the lack of selectivity, poor antihypertensive effect, and short half-life, the development of Osilodrostat as antihypertensive was halted. As of 2017, Osilodrostat is in phase III and phase II clinical trials for the treatment of pituitary ACTH hypersecretion and Cushing's syndrome, respectively.