U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Nisoldipine is a 1,4-dihydropyridine derivative with an outstanding vascular selectivity. As a specific calcium antagonist, it shortens the action potential and causes electromechanical uncoupling in ventricular myocardium. However, this effect, resulting in a negative inotropic action, appears at 100–1000 times higher concentrations of nisoldipine in comparison with its inhibition of calcium-dependent vascular contractions. Detailed analyses of pharmacological effects revealed additional properties such as enhancement of sodium excretion, an interaction with the reninangiotensin-aldosterone system and a protective effect against acute renal ischaemia, that may contribute to its therapeutic efficacy. Nisoldipine was developed at Bayer then licensed to Zeneca and marketed in the United States as SULAR. SULAR is indicated for the treatment of hypertension. It may be used alone or in combination with other antihypertensive agents. The mechanism of the therapeutic effect of nisoldipine is complex. It involves a decrease of the total peripheral vascular resistance (reduction of afterload) and an increase in coronary blood flow. Moreover, nisoldipine obviously normalises the impaired volume homoeostasis by improving renal function and thus reduces the need for activation of the ANP system. In the advanced stages of hypertension, nisoldipine prevents deleterious calcium overload and the resulting tissue damage.
Sodium taurodeoxycholate is a bile salt-related, anionic detergent used for isolation of membrane proteins including inner mitochondrial membrane proteins. It is formed by the conjugation of ursodeoxycholic acid (UDCA) with taurine. Sodium taurodeoxycholate and ursodeoxycholic acid are major constituents of black bear bile, which has been used in traditional Chinese medicine for thousands of years. Bear bile was historically employed to treat a number of diseases including jaundice, summer diarrhea, abdominal pain due to hepatobiliary diseases and gastric malfunction, biliary ascariasis, infectious skin diseases, the common cold, intestinal worms, and inflammation of the throat. Sodium taurodeoxycholate has been shown to inhibit apoptosis by modulating mitochondrial membrane perturbation and pore formation, B cell lymphoma 2 (Bcl-2)-associated protein X (BAX) translocation, cytochrome c release, and caspase activation. Sodium taurodeoxycholate inhibits amyloid beta (Ab)-induced apoptosis and attenuates the endoplasmic reticulum (ER) stress, which are thought to be key components of the pathological process in certain diseases. In clinical studies, Sodium taurodeoxycholate is shown to be very safe with oral administration of 1500 mg/day for up to 6 months. In a more recent clinical study, a dose of 1750 mg/day for up to 4 weeks was well tolerated in healthy obese persons. One of the major adverse effects of Sodium taurodeoxycholate is diarrhea. Based on the related information from ursodeoxycholic acid, other gastrointestinal side effects are possible including abdominal pain, flatulence, nausea, dyspepsia, and anorexia.
Sulfobromophthalein (BSP) is a dye with a high affinity for organic anion transporting polypeptides (OATPs) and has been used as a substrate for multidrug resistance associated protein 2 (Mrp2). BSP is transported into hepatocytes by OATPs and, after conjugation to glutathione, is excreted into bile by Mrp2.3 It was found to inhibit the aldo-keto reductase ARK1C20. Sulfobromophthalein (BSP) is used in diagnosis of hepatic disorders.It is also used for the quantitative determination of proteins.
Sodium taurodeoxycholate is a bile salt-related, anionic detergent used for isolation of membrane proteins including inner mitochondrial membrane proteins. It is formed by the conjugation of ursodeoxycholic acid (UDCA) with taurine. Sodium taurodeoxycholate and ursodeoxycholic acid are major constituents of black bear bile, which has been used in traditional Chinese medicine for thousands of years. Bear bile was historically employed to treat a number of diseases including jaundice, summer diarrhea, abdominal pain due to hepatobiliary diseases and gastric malfunction, biliary ascariasis, infectious skin diseases, the common cold, intestinal worms, and inflammation of the throat. Sodium taurodeoxycholate has been shown to inhibit apoptosis by modulating mitochondrial membrane perturbation and pore formation, B cell lymphoma 2 (Bcl-2)-associated protein X (BAX) translocation, cytochrome c release, and caspase activation. Sodium taurodeoxycholate inhibits amyloid beta (Ab)-induced apoptosis and attenuates the endoplasmic reticulum (ER) stress, which are thought to be key components of the pathological process in certain diseases. In clinical studies, Sodium taurodeoxycholate is shown to be very safe with oral administration of 1500 mg/day for up to 6 months. In a more recent clinical study, a dose of 1750 mg/day for up to 4 weeks was well tolerated in healthy obese persons. One of the major adverse effects of Sodium taurodeoxycholate is diarrhea. Based on the related information from ursodeoxycholic acid, other gastrointestinal side effects are possible including abdominal pain, flatulence, nausea, dyspepsia, and anorexia.
Sulfobromophthalein (BSP) is a dye with a high affinity for organic anion transporting polypeptides (OATPs) and has been used as a substrate for multidrug resistance associated protein 2 (Mrp2). BSP is transported into hepatocytes by OATPs and, after conjugation to glutathione, is excreted into bile by Mrp2.3 It was found to inhibit the aldo-keto reductase ARK1C20. Sulfobromophthalein (BSP) is used in diagnosis of hepatic disorders.It is also used for the quantitative determination of proteins.