{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Investigational
Class (Stereo):
CHEMICAL (RACEMIC)
Amiselimod (MT-1303) is a selective sphingosine 1-phosphate 1 (S1P1 ) receptor modulator which is currently being developed for the treatment of various autoimmune diseases. Unlike some other S1P receptor modulators, amiselimod seemed to show a favourable cardiac safety profile in preclinical, phase I and II studies. Amiselimod may be potentially useful for treatment of multiple sclerosis; inflammatory diseases; autoimmune diseases; psoriasis and inflammatory bowel diseases. Amiselimod is currently being developed by Mitsubishi Tanabe Pharma Corporation.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ezatiostat (TLK199) [γ-glutamyl-S-(benzyl)cysteinyl-R-phenyl glycine diethyl ester] is an inhibitor of Glutathione S-transferase P1–1 (GSTπ). The drug is a peptidomimetic of GSH (glutathione), esterified to enhance cellular uptake and designed to bind to the “G-site” of GSTP1–1. Independent of catalysis inhibition, TLK199 also disrupts the protein:protein interaction site(s) between GSTP1–1 and JNK1. Telik Inc was developing TLK-199 for the potential prevention of myelosuppression in blood diseases, namely myelodysplastic syndrome.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Tosedostat is a proprietary orally bioavailable inhibitor of the M1 family of aminopeptidases with potential antineoplastic activity. Tosedostat is converted intracellularly into a poorly membrane-permeable active metabolite (CHR-79888) which inhibits the M1 family of aminopeptidases, particularly puromycin-sensitive aminopeptidase (PuSA), and leukotriene A4 (LTA4) hydrolase; inhibition of these aminopeptidases in tumor cells may result in amino acid deprivation, inhibition of protein synthesis due to a decrease in the intracellular free amino acid pool, an increase in the level of the proapoptotic protein Noxa, and cell death. There are several ongoing Phase 2 cooperative group-sponsored trials and investigator-sponsored trials evaluating the clinical activity of Tosedostat in combination with standard agents in patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS).
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Amdoxovir is a guanosine analogue nucleoside reverse transcriptase inhibitor that is active in vitro against both HIV-1 and HBV. It is deaminated intracellularly by adenosine deaminase to dioxolane guanine (DXG). DXG-triphosphate, the active form of the drug, has greater activity than DAPD-triphosphate. Amdoxovir is under development (phase II study) for the treatment of HIV infection. Five subjects demonstrated lens opacities during the study, although baseline evaluations were not performed. Clinical studies of amdoxovir are currently on hold pending additional safety data.
Status:
Investigational
Source:
INN:coluracetam [INN]
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Coluracetam (code name BCI-540; formerly MKC-231) is a nootropic agent of the racetam family. It was initially developed and tested by the Mitsubishi Tanabe Pharma Corporation for Alzheimer's disease. After the drug failed to reach endpoints in its clinical trials it was in-licensed by BrainCells Inc for investigations into major depressive disorder (MDD). Like most racetam compounds, Coluracetam increases choline uptake, but it also increases uptake in damaged neurons. Specifically, Coluracetam interacts with the HACU process, which is responsible for absorbing choline into the neurons. This increased uptake occurs during the Acetylcholine synthesis process. Since Coluracetam improves choline preservation during this process, a larger amount is converted into Acetylcholine. This results in increased memory, attention and alertness. It is important to note here, that these benefits were only seen in subjects with previously impaired neurons, not in subjects with normally functioning neurons. Coluracetam is also shown to improve AMPA potentiation, which is a process that triggers cognitive function and alertness. Although Coluracetam interacts with choline transporters as well, there isn’t enough evidence to explain why or how this interaction occurs, or what occurs after the interaction. Coluracetam has been in phase II clinical trials for the treatment of major depression and anxiety. However, this research has been discontinued.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Talmapimod is a p38 MAPK kinase inhibitor that inhibits p38 alpha with IC50 value of 9 nM which is 10-times lower then IC50 for p38 beta. Talmapimod was under clinical development for the treatment of Myelodysplastic Syndromes, Multiple Myeloma and Rheumatoid Arthritis (phase II), however, it seems to be discontinued as no longer presents in Janssen's pipeline.
Status:
Investigational
Source:
INN:gedatolisib [INN]
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Gedatolisib (PF-05212384, PKI-587) is a highly potent dual inhibitor of PI3Kα, PI3Kγ and mTOR, originally being developed by Wyeth. Upon intravenous administration, gedatolisib inhibits both PI3K and mTOR kinases, which may result in apoptosis and growth inhibition of cancer cells overexpressing PI3K/mTOR. Activation of the PI3K/mTOR pathway promotes cell growth, survival, and resistance to chemotherapy and radiotherapy; mTOR, a serine/threonine kinase downstream of PI3K, may also be activated independent of PI3K. Significant antitumor efficacy and a favorable pharmacokinetic/safety profile justified clinical evaluation of Gedatolisib. Gedatolisb is in phase II clinical trials by Pfizer for the treatment of acute myeloid leukaemia. Gedatolisb is in phase I clinical trials for the treatment of solid tumours.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
AT-406 (DEBIO-1143, SM-406), is a potent and orally bioavailable Smac mimetic and an antagonist of the inhibitor of apoptosis proteins (IAPs). AT-406 inhibits cancer cell growth in various human cancer cell lines. It has good oral bioavailability in mice, rats, non-human primates, and dogs, is highly effective in induction of apoptosis in xenograft tumors, and is capable of complete inhibition of tumor growth. Debiopharm under a licence from Ascenta Therapeutics is developing AT-406 for the treatment of cancers.
Status:
Investigational
Source:
INN:neboglamine [INN]
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Neboglamine is a functional modulator of the glycine site on the N-methyl-D-aspartate (NMDA) receptor. Neboglamine appeared to promote neuronal growth as measured by expression of Fos-like immunoreactivity, particularly in the prefrontal cortex, nucleus accumbens, and lateral septal nucleus. Neboglamine behaves as a potential antipsychotic. Neboglamine is in phase II clinical trials by Rottapharm for the treatment of schizophrenia and cocaine abuse.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Etazolate (EHT-0202) is a selective, positive GABAA receptor modulator has completed phase II clinical trials in patients with Alzheimer's disease. It is also a selective phosphodiesterase-4 inhibitor that is specific for cAMP. Etazolate showed anxiolytic and antidepressant activity and could be useful in managing post-traumatic stress disorder.