{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Investigational
Source:
INN:osugacestat [INN]
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
BMS-906024 is a lead candidate of a series of inhibitors of gamma secretase-mediated Notch signalling. BMS-906024 is an orally bioavailable, small-molecule gamma secretase (GS) and pan-Notch inhibitor, with potential antineoplastic activity. Upon administration, GS/pan-Notch inhibitor BMS-906024 binds to GS and blocks activation of Notch receptors, which may inhibit the proliferation of tumor cells with an overly-active Notch pathway. The integral membrane protein GS is a multi-subunit protease complex that cleaves single-pass transmembrane proteins, such as Notch receptors, at residues within their transmembrane domains that lead to their activation. Overexpression of the Notch signaling pathway has been correlated with increased tumor cell growth. BMS-906024 is currently in Phase 1 clinical trials for patients with T-cell acute lymphoblastic leukemia and metastatic solid tumors, including lung cancer.
Status:
Investigational
Source:
NCT01313286: Phase 1 Interventional Completed Healthy Volunteers
(2011)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
LY2608204 is a activator of glucokinase (GK) with EC50 of 42 nM. Eli Lilly is developing LY 2608204 as an orally administered, once-daily therapy for type 2 diabetes. LY-2608204 is in phase I clinical trials for the treatment of type 2 diabetes.
Status:
Investigational
Source:
NCT01922752: Phase 1 Interventional Completed Solid Tumors
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
CEP-37440 is a potent ATP-competitive, highly kinase selective, and orally active inhibitor of FAK1 and anaplastic lymphoma kinase (ALK). In addition to a favorable metabolic stability and pharmacokinetic profile preclinically, CEP-37440 is also a brain penetrant. CEP-37440 was able to inhibit the proliferation of certain IBC cells by decreasing the levels of phospho-FAK1 (Tyr 397); none of the cells expressed ALK. Studies using IBC xenograft models showed that CEP-37440 also effectively reduces the growth of the primary tumor xenografts and inhibits the development of brain metastases in mice.
Status:
Investigational
Source:
INN:defosbarasertib [INN]
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
AstraZeneca and BIND Therapeutics (formerly BIND Biosciences) are collaborating to develop AZD-1152HQPA (AZD2811) for the treatment of cancer. AZD2811, a novel, selective inhibitor of Aurora B kinase that has been shown to be active in both solid and hematological tumors in preclinical models, is the second Accurin candidate to enter clinical development. AZD1152-HQPA is a highly selective Aurora B inhibitor with IC50 of 0.37 nM in a cell-free assay. AZD1152-HQPA inhibited the proliferation of AML lines (HL-60, NB4, MOLM13), ALL line (PALL-2), biphenotypic leukemia (MV4-11), acute eosinophilic leukemia (EOL-1), and the blast crisis of chronic myeloid leukemia K562 cells with an IC50 ranging from 3 nM to 40 nM. The phase 1 trial is enrolling patients with advanced solid tumors, including patients with small cell lung cancer, and is being conducted by AstraZeneca under the companies’ 2013 collaboration agreement with BIND managing all chemistry, manufacturing and control activities.
Status:
Investigational
Source:
NCT00454090: Phase 1 Interventional Completed Cancer
(2007)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
AZD-8330 is a potent, selective, orally active MEK inhibitor that blocks signal transduction pathways implicated in cancer cell proliferation and survival. AZD-8330 has shown tumor suppressive activity in multiple preclinical models of human cancer including melanoma, pancreatic, colon, lung, and breast cancers. AZD-8330 specifically inhibits mitogen-activated protein kinase kinase 1 (MEK or MAP/ERK kinase1), resulting in inhibition of growth factor-mediated cell signaling and tumor cell proliferation. MEK is a key component of the RAS/RAF/MEK/ERK signaling pathway that regulates cell growth; constitutive activation of this pathway has been implicated in many cancers. AZD-8330 had been in phase I clinical trials by AstraZeneca for the treatment of malignancies. However, this research has been discontinued.
Status:
Investigational
Source:
NCT01217905: Phase 1 Interventional Completed Type 2 Diabetes
(2010)
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
AZD-7687 is a potent inhibitor of Diacylglycerol O-acyltransferase 1 (DGAT1) which was developed by AstraZeneca for the treatment obesity and type 2 diabetes mellitus. AZD-7687 reached phase I of clinical trials, but was discontinued by unknown reasons.
Status:
Investigational
Source:
NCT00813384: Phase 1 Interventional Completed Cancer
(2008)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Amgen was developing AMG-208, a small molecule inhibitor of c-Met, for the treatment of cancer. AMG-208 shows the potent inhibition of kinase c-Met activity with IC50 of 9 nM in a cell-free assay. Besides, AMG-208 treatment also leads to the inhibition of HGF-mediated c-Met phosphorylation in PC3 cells with IC50 of 46 nM. AMG-208 showed evidence of antitumor activity, particularly in prostate cancer. On December 1, 2014 Amgen completed a phase I trial in solid tumours.
Status:
Investigational
Source:
NCT01677780: Phase 1 Interventional Completed Myelogenous Leukemia, Chronic, Neoplasms, Myelogenous Leukemia, Acute
(2012)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
RO-5045337 (RG7112) is a small molecule that binds to a MDM2, a negative regulator of tumor-supressor protein p53. It was discovered by Roche and investigated in clinical trials against solid tumors, leukemias and sarcomas.
Status:
Investigational
Source:
NCT00666081: Phase 1 Interventional Withdrawn Cancer
(2008)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
GSK690693 is an aminofurazan derivative, a novel ATP-competitive, low-nanomolar pan-Akt kinase inhibitor. It is selective for the Akt isoforms versus the majority of kinases in other families; however, it does inhibit additional members of the AGC kinase family. GlaxoSmithKline was developing this compound for the treatment of lymphoma solid tumours but the clinical development of this compound was terminated due to the associated side-effect of transient hyperglycemia.
Status:
Investigational
Source:
NCT02260661: Phase 1 Interventional Completed Advanced Solid Malignancies
(2014)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
AZD-8835 is a potent inhibitor of PI3Kα and PI3Kδ with selectivity versus PI3Kβ, PI3Kγ, and other kinases that preferentially inhibited growth in cells with mutant PIK3CA status, such as in estrogen receptor-positive (ER(+)) breast cancer cell lines BT474, MCF7, and T47D (sub-umol/L GI50s). Consistent with this, AZD-8835 demonstrated antitumor efficacy in corresponding breast
cancer xenograft models when dosed continuously. AZD-8835 is a selective, oral inhibitor of PI3K isoforms α and δ with the following activity in enzymatic assays: PI3K α – IC50 = 6nM (equipotent vs wt and E545K / H1047R mutants); PI3K δ – IC50 = 6nM; PI3K γ – IC50 = 90nM; PI3K β – IC50 = 431nM. Inhibition of signalling in cells (pAKT endpoint): PI3K α – IC50 = 57nM; PI3K δ – IC50 = 49nM; PI3K β – IC50 = 3.6uM; PI3K γ - IC50 = 532nM. AZD-8835 is in phase I clinical studies by AstraZeneca for the treatment of advanced solid tumors and ER+ and HER-2 negative breast cancer.