{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2011)
Source:
ANDA090618
(2011)
Source URL:
First approved in 1988
Source:
AXID by SMITHKLINE BEECHAM
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Nizatidine, chemically N-[2-[[[2- [(dimethylamino)methyl]-4-thiazolyl]methyl]thio]ethyl]-N’ -methyl-2-nitro-1,1-ethenediamine, is a histamine H2-receptor antagonist.
Nizatidine reduced gastric acid secretion for up to 8 h suggesting that this compound could be used in with a once or twice daily dosage regime. Nizatidine was rapidly and well-absorbed orally, was widely distributed in tissues and the majority of the dose was excreted in the urine within 24 h. Nizatidine is indicated for duodenal and gastric ulcer as well as for the treatment of endoscopically diagnosed esophagitis, including erosive and ulcerative esophagitis, and associated heartburn due to gastroesophageal reflux disease.
Status:
US Approved Rx
(1992)
Source:
NDA020209
(1992)
Source URL:
First approved in 1988
Source:
NDA019828
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Oxiconazole nitrate is 2',4'-dichloro-2-imidazol-1-ylacetophenone (Z)-[0-(2,4-dichlorobenzyl)oxime], mononitrate is an imidazole derivative characterized by a broad fungistatic spectrum. In vitro oxiconazole is highly effective against many dermatophytes, including Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton tonsurans, and Epidermophyton floccosum. In addition, fungicidal activity of various degree was found in selected species (Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans and Trichophyton mentagrophytes). Synthesis of DNA was inhibited by subinhibitory concentrations of oxiconazole in parallel to cell multiplication, whereas synthesis of RNA, protein and carbohydrate was decreased to a lesser extent. OXISTAT® (Oxiconazole nitrate) Cream and Lotion are indicated for the topical treatment of the following dermal infections: tinea pedis, tinea cruris, and tinea corporis due to Trichophyton rubrum, Trichophyton mentagrophytes, or Epidermophyton floccosum. OXISTAT® Cream is indicated for the topical treatment of tinea (pityriasis) versicolor due to Malassezia furfur. Oxiconazole cream exerts no detectable systemic effect since only a negligible amount is absorbed from the skin. Once-daily use of oxiconazole cream could be valuable in patients with a history of noncompliance with multiple-daily regimens of other topical antifungal agents.
Status:
US Approved Rx
(2019)
Source:
ANDA208201
(2019)
Source URL:
First approved in 1988
Source:
NDA019599
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Naftifine is a synthetic, broad spectrum, antifungal agent and allylamine derivative. The following in vitro data are available, but their clinical significance is unknown. Naftifine has been shown to exhibit fungicidal activity in vitro against a broad spectrum of organisms including Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton tonsurans, Epidermophyton floccosum, and Microsporum canis, Microsporum audouini, and Microsporum gypseum; and fungistatic activity against Candida species including Candida albicans. However it is only used to treat the organisms listed in the indications. Although the exact mechanism of action against fungi is not known, naftifine appears to interfere with sterol biosynthesis by inhibiting the enzyme squalene 2,3-epoxidase. This inhibition of enzyme activity results in decreased amounts of sterols, especially ergosterol, and a corresponding accumulation of squalene in the cells. Naftifine is used for the topical treatment of tinea pedis, tinea cruris, and tinea corporis caused by the organisms Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton tonsurans and Epidermophyton floccosum. Marketed as Naftin.
Status:
US Approved Rx
(2006)
Source:
NDA021471
(2006)
Source URL:
First approved in 1988
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Avobenzone is an oil soluble ingredient used in sunscreen products to absorb the full spectrum of UVA rays. It helps prevent sunburn. Avobenzone works by absorbing the rays and converting them to energy that is less damaging to the skin.
Status:
US Approved Rx
(2021)
Source:
ANDA214326
(2021)
Source URL:
First approved in 1988
Source:
NDA019569
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Tiopronin is a prescription thiol drug used primarily in the treatment of severe homozygous cystinuria. Patients with cystinuria excrete high levels of cystine in their urine and are at risk for kidney stone formation. Tiopronin is used as a second-line therapy to control the rate of cystine precipitation and excretion, and prevent kidney stone formation. It is used after a failure of the non-pharmacological first line treatment consisting of increased fluid intake, restriction of sodium and protein, and urinary alkalinization. As cystinuria is a relatively rare disease, tiopronin is classified as an orphan drug and is not patented in the United States. It is similar to d-penicillamine in use and efficacy, but offers the advantage of far less adverse effects. Tiopronin is dosed on an individual basis using close monitoring of urinary cystine concentrations and urinary output. Tiopronin is a chelating agent. It works by removing extra cystine (the cause of kidney stones) from the urine, which keeps the kidney stones from forming. It works by reacting with urinary cysteine to form a more soluble, disulfide linked, tiopronin-cysteine complex.
Status:
US Approved Rx
(2002)
Source:
ANDA076078
(2002)
Source URL:
First approved in 1987
Source:
IFEX by BAXTER HLTHCARE
Source URL:
Class (Stereo):
CHEMICAL (UNKNOWN)
Targets:
Conditions:
Ifosfamide (IF) is a widely used antitumor prodrug. It is in the oxazaphosphorine class of alkylating agents, and it is effective against solid tumors. Ifosfamide mechanism of crosslinking DNA plays a major role in preventing cancer cells from proliferating. Ifosfamide is approved by FDA for the treatment of germ cell testicular cancer.
Status:
US Approved Rx
(2021)
Source:
ANDA213053
(2021)
Source URL:
First approved in 1987
Source:
BACTROBAN by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Mupirocin (BACTROBAN®) is an antibiotic from a strain of Pseudomonas fluorescens. It has shown excellent activity against gram-positive staphylococci and streptococci. The antibiotic is used primarily for the treatment of primary and secondary skin disorders, nasal infections, and wound healing. Mupirocin inhibits bacterial protein synthesis by reversibly and specifically binding to bacterial isoleucyltransfer RNA (tRNA) synthetase. It also severely inhibits RNA synthesis. DNA and cell wall peptidoglycan synthesis are inhibited to a lesser extent and interference with these processes is considered to be a secondary effect. Mupirocin is bactericidal at concentrations achieved by topical administration.
Status:
US Approved Rx
(2019)
Source:
ANDA211858
(2019)
Source URL:
First approved in 1987
Source:
NDA019618
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Mesalamine, also known as Mesalazine or 5-aminosalicylic acid (5-ASA), is an anti-inflammatory drug used to treat inflammation of the digestive tract (Crohn's disease) and mild to moderate ulcerative colitis. Mesalazine is a bowel-specific aminosalicylate drug that is metabolized in the gut and has its predominant actions there, thereby having fewer systemic side effects. As a derivative of salicylic acid, 5-ASA is also an antioxidant that traps free radicals, which are potentially damaging by-products of metabolism. Although the mechanism of action of mesalazine is not fully understood, it appears to be topical rather than systemic. Mucosal production of arachidonic acid metabolites, both through the cyclooxygenase pathways, i.e., prostanoids, and through the lipoxygenase pathways, i.e., leukotrienes and hydroxyeicosatetraenoic acids, is increased in patients with chronic inflammatory bowel disease, and it is possible that mesalazine diminishes inflammation by blocking cyclooxygenase and inhibiting prostaglandin production in the colon. Mesalazine is used for the treatment of active ulcerative proctitis.
Status:
US Approved Rx
(2007)
Source:
ANDA078349
(2007)
Source URL:
First approved in 1987
Source:
NDA019655
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Zidovudine is a nucleoside reverse transcriptase inhibitor (NRTI) with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Zidovudine is phosphorylated to active metabolites that compete for incorporation into viral DNA. They inhibit the HIV reverse transcriptase enzyme competitively and act as a chain terminator of DNA synthesis. The lack of a 3'-OH group in the incorporated nucleoside analogue prevents the formation of the 5' to 3' phosphodiester linkage essential for DNA chain elongation, and therefore, the viral DNA growth is terminated. Zidovudine, a structural analog of thymidine, is a prodrug that must be phosphorylated to its active 5′-triphosphate metabolite, zidovudine triphosphate (ZDV-TP). It inhibits the activity of HIV-1 reverse transcriptase (RT) via DNA chain termination after incorporation of the nucleotide analogue. It competes with the natural substrate dGTP and incorporates itself into viral DNA. It is also a weak inhibitor of cellular DNA polymerase α and γ. Zidovudine is used in combination with other antiretroviral agents for the treatment of human immunovirus (HIV) infections. Zidovudine is marketed as Retrovir.
Status:
US Approved Rx
(2022)
Source:
ANDA214849
(2022)
Source URL:
First approved in 1987
Source:
NDA019594
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ursodiol tablets, USP are bile acids indicated for the treatment of patients with primary biliary cirrhosis. Ursodiol (Ursodeoxycholic acid), a naturally occurring hydrophilic bile acid, derived from cholesterol, is present as a minor fraction of the total human bile acid pool. Ursodeoxycholic acid reduces elevated liver enzyme levels by facilitating bile flow through the liver and protecting liver cells. The main mechanism if anticholelithic. Although the exact process of ursodiol's anticholelithic action is not completely understood, it is thought that the drug is concentrated in bile and decreases biliary cholesterol by suppressing hepatic synthesis and secretion of cholesterol and by inhibiting its intestinal absorption. The reduced cholesterol saturation permits the gradual solubilization of cholesterol from gallstones, resulting in their eventual dissolution. In addition to the replacement and displacement of toxic bile acids, other mechanisms of action include cytoprotection of the injured bile duct epithelial cells (cholangiocytes) against toxic effects of bile acids, inhibition of apotosis of hepatocytes, immunomodulatory effects, and stimulation of bile secretion by hepatocytes and cholangiocytes. Neither accidental nor intentional overdosing with ursodeoxycholic acid has been reported. Doses of ursodeoxycholic acid in the range of 16-20 mg/kg/day have been tolerated for 6-37 months without symptoms by 7 patients. The LD50 for ursodeoxycholic acid in rats is over 5000 mg/kg given over 7-10 days and over 7500 mg/kg for mice. The most likely manifestation of severe overdose with ursodeoxycholic acid would probably be diarrhea, which should be treated symptomatically.