U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 791 - 800 of 4602 results

Zidovudine is a nucleoside reverse transcriptase inhibitor (NRTI) with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Zidovudine is phosphorylated to active metabolites that compete for incorporation into viral DNA. They inhibit the HIV reverse transcriptase enzyme competitively and act as a chain terminator of DNA synthesis. The lack of a 3'-OH group in the incorporated nucleoside analogue prevents the formation of the 5' to 3' phosphodiester linkage essential for DNA chain elongation, and therefore, the viral DNA growth is terminated. Zidovudine, a structural analog of thymidine, is a prodrug that must be phosphorylated to its active 5′-triphosphate metabolite, zidovudine triphosphate (ZDV-TP). It inhibits the activity of HIV-1 reverse transcriptase (RT) via DNA chain termination after incorporation of the nucleotide analogue. It competes with the natural substrate dGTP and incorporates itself into viral DNA. It is also a weak inhibitor of cellular DNA polymerase α and γ. Zidovudine is used in combination with other antiretroviral agents for the treatment of human immunovirus (HIV) infections. Zidovudine is marketed as Retrovir.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Ursodiol tablets, USP are bile acids indicated for the treatment of patients with primary biliary cirrhosis. Ursodiol (Ursodeoxycholic acid), a naturally occurring hydrophilic bile acid, derived from cholesterol, is present as a minor fraction of the total human bile acid pool. Ursodeoxycholic acid reduces elevated liver enzyme levels by facilitating bile flow through the liver and protecting liver cells. The main mechanism if anticholelithic. Although the exact process of ursodiol's anticholelithic action is not completely understood, it is thought that the drug is concentrated in bile and decreases biliary cholesterol by suppressing hepatic synthesis and secretion of cholesterol and by inhibiting its intestinal absorption. The reduced cholesterol saturation permits the gradual solubilization of cholesterol from gallstones, resulting in their eventual dissolution. In addition to the replacement and displacement of toxic bile acids, other mechanisms of action include cytoprotection of the injured bile duct epithelial cells (cholangiocytes) against toxic effects of bile acids, inhibition of apotosis of hepatocytes, immunomodulatory effects, and stimulation of bile secretion by hepatocytes and cholangiocytes. Neither accidental nor intentional overdosing with ursodeoxycholic acid has been reported. Doses of ursodeoxycholic acid in the range of 16-20 mg/kg/day have been tolerated for 6-37 months without symptoms by 7 patients. The LD50 for ursodeoxycholic acid in rats is over 5000 mg/kg given over 7-10 days and over 7500 mg/kg for mice. The most likely manifestation of severe overdose with ursodeoxycholic acid would probably be diarrhea, which should be treated symptomatically.
Apraclonidine (IOPIDINE) is an α2-adrenergic receptor agonist and a weak α1-adrenergic receptor agonist. It is used for the prevention and treatment of postsurgical intraocular pressure elevation. The following adverse events, occurring in less than 2% of patients, were reported in association with the use of IOPIDINE Ophthalmic Solution in laser surgery: ocular injection, upper lid elevation, irregular heart rate, nasal decongestion, ocular inflammation, conjunctival blanching, and mydriasis. Interactions with other agents have not been investigated.
Mitoxantrone (NOVANTRONE) is a synthetic antineoplastic anthracenedione. Mitoxantrone, a DNA-reactive agent that intercalates into deoxyribonucleic acid (DNA) through hydrogen bonding, causes crosslinks and strand breaks. Mitoxantrone also interferes with ribonucleic acid (RNA) and is a potent inhibitor of topoisomerase II, an enzyme responsible for uncoiling and repairing damaged DNA. It has a cytocidal effect on both proliferating and nonproliferating cultured human cells, suggesting lack of cell cycle phase specificity. Mitoxantrone has been shown in vitro to inhibit B cell, T cell, and macrophage proliferation and impair antigen pre sentation, as well as the secretion of interferon gamma, TNFα, and IL-2. NOVANTRONE is indicated for reducing neurologic disability and/or the frequency of clinical relapses in patients with secondary (chronic) progressive, progressive relapsing, or worsening relapsing-remitting multiple sclerosis (i.e., patients whose neurologic status is significantly abnormal between relapses). NOVANTRONE in combination with corticosteroids is indicated as initial chemotherapy for the treatment of patients with pain related to advanced hormone-refractory prostate cancer. NOVANTRONE in combination with other approved drug(s) is indicated in the initial therapy of acute nonlymphocytic leukemia (ANLL) in adults. This category includes myelogenous, promyelocytic, monocytic, and erythroid acute leukemias.
Ciprofloxacin (1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid) is the synthetic antimicrobial agent for oral or intravenous administration. Ciprofloxacin is a member of the fluoroquinolone class of antibacterial agents. The bactericidal action of ciprofloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV (both Type II topoisomerases), which are required for bacterial DNA replication, transcription, repair, and recombination. Ciprofloxacin is used to treat a wide variety of infections, including infections of bones and joints, endocarditis, gastroenteritis, malignant otitis externa, respiratory tract infections, cellulitis, urinary tract infections, prostatitis, anthrax, and chancroid. In the United States, ciprofloxacin is pregnancy category C. This category includes drugs for which no adequate and well-controlled studies in human pregnancy exist, and for which animal studies have suggested the potential for harm to the fetus, but potential benefits may warrant use of the drug in pregnant women despite potential risks. Fluoroquinolones have been reported as present in a mother's milk and thus passed on to the nursing child. Oral and intravenous ciprofloxacin is approved by the FDA for use in children for only two indications due to the risk of permanent injury to the musculoskeletal system: Inhalational anthrax (postexposure) and Complicated urinary tract infections and pyelonephritis due to Escherichia coli.
Status:
First approved in 1987

Class (Stereo):
CHEMICAL (RACEMIC)



Terconazole is an antifungal drug used to treat vaginal yeast infection. Terconazole may exert its antifungal activity by disrupting normal fungal cell membrane permeability. Terconazole and other triazole antifungal agents inhibit cytochrome P450 "14-alpha-demethylase" in susceptible fungi, which leads to the accumulation of lanosterol and other methylated sterols and a decrease in ergosterol concentration. Depletion of ergosterol in the membrane disrupts the structure and function of the fungal cell leading to a decrease or inhibition of fungal growth. During controlled clinical studies conducted in the United States, 521 patients with vulvovaginal candidiasis were treated with terconazole 0.4% vaginal cream. Based on comparative analyses with placebo, the adverse experiences considered most likely related to terconazole 0.4% vaginal cream were a headache and body pain. Fever and chills, vulvovaginal burning, itching, and irritation have also been reported. The adverse drug experience on terconazole most frequently causing discontinuation was vulvovaginal itching.
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
First approved in 1987

Class (Stereo):
CHEMICAL (ACHIRAL)



Milrinone, a synthetic dimethylxanthine derivative structurally related to theophylline and caffeine, is used in the treatment of peripheral vascular diseases and in the management of cerebrovascular insufficiency, sickle cell disease, and diabetic neuropathy. Milrinone inhibits erythrocyte phosphodiesterase, resulting in an increase in erythrocyte cAMP activity. Subsequently, the erythrocyte membrane becomes more resistant to deformity. Along with erythrocyte activity, Milrinone also decreases blood viscosity by reducing plasma fibrinogen concentrations and increasing fibrinolytic activity. Milrinone is indicated for the treatment of congestive heart failure. Milrinone was marketed under the brand name Primacor.
Terazosin (marketed as Hytrin or Zayasel) is a selective alpha1-antagonist used for treatment of symptoms of benign prostatic hyperplasia (BPH). It also acts to lower blood pressure, so it is a drug of choice for men with hypertension and prostate enlargement. All three receptor subtypes appear to be involved in maintaining vascular tone. The α1A-receptor maintains basal vascular tone while the α1B-receptor mediates the vasocontrictory effects of exogenous α1-agonists. Activation of α1-receptors activates Gq-proteins, which results in intracellular stimulation of phospholipases C, A2, and D. This results in mobilization of Ca2+ from intracellular stores, activation of mitogen-activated kinase and PI3 kinase pathways and subsequent vasoconstriction.