U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 61 - 70 of 80 results

Erythromycin ethylsuccinate (E.E.S.®, ERY-PED®) is an ester of erythromycin base and succinic acid. It is suitable for oral administration. Erythromycin is a macrolide antibiotic, produced by Saccharopolyspora erythraea (formerly Streptomyces erythraeus). It acts primarily as a bacteriostatic agent. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. Erythromycin does not affect nucleic acid synthesis.
Erythromycin ethylsuccinate (E.E.S.®, ERY-PED®) is an ester of erythromycin base and succinic acid. It is suitable for oral administration. Erythromycin is a macrolide antibiotic, produced by Saccharopolyspora erythraea (formerly Streptomyces erythraeus). It acts primarily as a bacteriostatic agent. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. Erythromycin does not affect nucleic acid synthesis.
Erythromycin ethylsuccinate (E.E.S.®, ERY-PED®) is an ester of erythromycin base and succinic acid. It is suitable for oral administration. Erythromycin is a macrolide antibiotic, produced by Saccharopolyspora erythraea (formerly Streptomyces erythraeus). It acts primarily as a bacteriostatic agent. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. Erythromycin does not affect nucleic acid synthesis.
Erythromycin ethylsuccinate (E.E.S.®, ERY-PED®) is an ester of erythromycin base and succinic acid. It is suitable for oral administration. Erythromycin is a macrolide antibiotic, produced by Saccharopolyspora erythraea (formerly Streptomyces erythraeus). It acts primarily as a bacteriostatic agent. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. Erythromycin does not affect nucleic acid synthesis.
Erythromycin ethylsuccinate (E.E.S.®, ERY-PED®) is an ester of erythromycin base and succinic acid. It is suitable for oral administration. Erythromycin is a macrolide antibiotic, produced by Saccharopolyspora erythraea (formerly Streptomyces erythraeus). It acts primarily as a bacteriostatic agent. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. Erythromycin does not affect nucleic acid synthesis.
Erythromycin ethylsuccinate (E.E.S.®, ERY-PED®) is an ester of erythromycin base and succinic acid. It is suitable for oral administration. Erythromycin is a macrolide antibiotic, produced by Saccharopolyspora erythraea (formerly Streptomyces erythraeus). It acts primarily as a bacteriostatic agent. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. Erythromycin does not affect nucleic acid synthesis.
Erythromycin ethylsuccinate (E.E.S.®, ERY-PED®) is an ester of erythromycin base and succinic acid. It is suitable for oral administration. Erythromycin is a macrolide antibiotic, produced by Saccharopolyspora erythraea (formerly Streptomyces erythraeus). It acts primarily as a bacteriostatic agent. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. Erythromycin does not affect nucleic acid synthesis.
Erythromycin ethylsuccinate (E.E.S.®, ERY-PED®) is an ester of erythromycin base and succinic acid. It is suitable for oral administration. Erythromycin is a macrolide antibiotic, produced by Saccharopolyspora erythraea (formerly Streptomyces erythraeus). It acts primarily as a bacteriostatic agent. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. Erythromycin does not affect nucleic acid synthesis.
Erythromycin ethylsuccinate (E.E.S.®, ERY-PED®) is an ester of erythromycin base and succinic acid. It is suitable for oral administration. Erythromycin is a macrolide antibiotic, produced by Saccharopolyspora erythraea (formerly Streptomyces erythraeus). It acts primarily as a bacteriostatic agent. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. Erythromycin does not affect nucleic acid synthesis.
Cefoperazone (marketed under the name Cefobid) is a third-generation cephalosporin antibiotic. Cefoperazone has a broad spectrum of activity: Respiratory Tract Infections caused by S. pneumoniae, H. influenzae, S. aureus (penicillinase and non-penicillinase producing strains), S. pyogenes (Group A beta-hemolytic streptococci), P. aeruginosa, Klebsiella pneumoniae, E. coli, Proteus mirabilis, and Enterobacter species. Peritonitis and Other Intra-abdominal Infections caused by E. coli, P. aeruginosa, and anaerobic gram-negative bacilli (including Bacteroides fragilis). Bacterial Septicemia caused by S. pneumoniae, S. agalactiae, S. aureus, Pseudomonas aeruginosa, E. coli, Klebsiella spp., Klebsiella pneumoniae, Proteus species (indole-positive and indole-negative), Clostridium spp. and anaerobic gram-positive cocci. Infections of the Skin and Skin Structures caused by S. aureus (penicillinase and non-penicillinase producing strains), S. pyogenes, and P. aeruginosa. Pelvic Inflammatory Disease, Endometritis, and Other Infections of the Female Genital Tract caused by N. gonorrhoeae, S. epidermidis, S. agalactiae, E. coli, Clostridium spp., Bacteroides species (including Bacteroides fragilis), and anaerobic gram-positive cocci. Cefobid has no activity against Chlamydia trachomatis. Therefore, when Cefobid is used in the treatment of patients with pelvic inflammatory disease and C. trachomatis is one of the suspected pathogens, appropriate anti-chlamydial coverage should be added. Urinary Tract Infections caused by Escherichia coli and Pseudomonas aeruginosa. Cefoperazone, a third-generation cephalosporin, interferes with cell wall synthesis by binding to the penicillin-binding proteins (PBPs), thus preventing cross-linking of nascent peptidoglycan. Cefoperazone is stable to penicillinases and has a high degree of stability to many beta-lactamases produced by gram-negative bacteria. When tested in vitro, cefoperazone has demonstrated synergistic interactions with aminoglycosides against gram-negative bacilli. As with all cephalosporins, hypersensitivity manifested by skin reactions or drug fever. Reversible neutropenia may occur with prolonged administration. Diarrhea or loose stools has been reported also.

Showing 61 - 70 of 80 results