{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Previously Marketed
Source:
CEFOTAXIME SODIUM by CEPHAZONE PHARMA
(2010)
Source URL:
First approved in 1981
Source:
CLAFORAN by STERIMAX
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cefotaxime sodium is a semisynthetic, broad spectrum cephalosporin antibiotic for parenteral administration. It’s a 3rd Generation Cephalosporin that is FDA approved for the treatment of lower respiratory tract infections, genitourinary infections, gynecologic infections, bacteremia/septicemia, skin and skin structure infections, intra-abdominal infections, bone and/or joint infections and central nervous system infections. The bactericidal activity of cefotaxime sodium results from inhibition of cell wall synthesis. Cefotaxime sodium has in vitro activity against a wide range of gram-positive and gram-negative organisms. Cefotaxime sodium has a high degree of stability in the presence of ß-lactamases, both penicillinases and cephalosporinases, of gram-negative and gram-positive bacteria. Increased nephrotoxicity has been reported following concomitant administration of cephalosporins and aminoglycoside antibiotics. Common adverse reactions include injection site pain, injection site phlebitis, rash, diarrhea, vomiting. Increased nephrotoxicity has been reported following concomitant administration of cephalosporins and aminoglycoside antibiotics.
Status:
US Previously Marketed
Source:
MANDOL by LILLY
(1978)
Source URL:
First approved in 1978
Source:
MANDOL by LILLY
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Cefamandole (also known as cephamandole) is a broad-spectrum cephalosporin antibiotic. The clinically used form of cefamandole is an ester form, cefamandole nafate, a prodrug. Cefamandole is no longer available in USA, but it has prescription in UK. Cefamandole under brand name mandol is indicated for the treatment of serious infections caused by susceptible strains of the designated microorganisms such as: lower respiratory infections, including pneumonia, caused by S. pneumoniae. So as urinary tract infections caused by E. coli, Proteus spp.; peritonitis caused by E. coli and Enterobacter spp. Septicemia caused by E. coli; skin and skin structure infections caused by S. aureus; bone and joint infections caused by S. aureus (penicillinase- and non-penicillinase-producing). Like all beta-lactam antibiotics, cefamandole binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Bacterial cell wall autolytic enzymes such as autolysins then mediate cell lysis; it is possible that cefamandole interferes with an autolysin inhibitor.
Status:
US Previously Marketed
Source:
TIMENTIN by GLAXOSMITHKLINE
(1986)
Source URL:
First approved in 1976
Source:
TICAR by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Ticarcillin (also known as Ticar) is a semisynthetic antibiotic with a broad spectrum of bactericidal activity against many gram-positive and gram-negative aerobic and anaerobic bacteria. Ticarcillin is not absorbed orally; therefore, it must be given intravenously or intramuscularly. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis when the bacteria tries to divide, causing death. Usage of ticar was discontinued.
Status:
First approved in 1968
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Cephaloridine (or cefaloridine) is a first generation semisynthetic derivative of cephalosporin C. It is unique among cephalosporins in that it exists as a zwitterion. It is of semi synthetic origin and belongs to cephem carboxylate. It belongs to Peptidoglycan synthesis inhibitor pharmacological group on the basis of mechanism of action. Since the discovery of cephalosporins P, N and C in 1948 there have been many studies describing the antibiotic action of cephalosporins and the possibility to synthesize derivatives. Hydrolysis of cephalosporin C, isolation of 7-aminocephalosporanic acid and the addition of side chains opened the possibility to produce various semi-synthetic cephalosporins. In 1962, cephalothin and cephaloridine were introduced. Cephaloridine is very active against gram positive cocci and used in a large variety of bacterial infections, such as respiratory tract, skin and urinary tract infections. Cephaloridine is primarily indicated in conditions like Bacterial infections, Bronchitis, Gonorrhoea, and can also be given in adjunctive therapy as an alternative drug of choice in Corneal ulcers, Intraocular infections. Cephaloridine was temporarily popular because it was better tolerated intramuscularly and attained in higher and more sustained levels in blood than cephalothin. Because it is also poorly absorbed after oral administration the use of this drug for humans declined rapidly, especially since the second generation of cephalosporins was introduced in the 1970s. Today it is more commonly used in veterinary practice to treat mild to severe bacterial infections caused by penicillin resistant and penicillin sensitive Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes, Streptococcus pneumoniae, Bacillus sutbtilis, Klebsiella, Clostridium diptheriae, Salmonella and Shigella. Before the 1970s, cephaloridine was used to treat patients with urinary tract infections. Besides the drug has been used successfully in the treatment of various lower respiratory tract infections. Cephaloridine was very effective to cure pneumococcal pneumonia. It has a high clinical and bacteriological rate of success in staphylococcal and streptococcal infections.
Status:
Possibly Marketed Outside US
Source:
21 CFR 333A
(2020)
Source URL:
First approved in 1950
Source:
NDA208090
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Ammonium myristate is passage-delaying substance. It was used as a substance for influencing gastrointestinal passage. The addition of ammonium myristate caused a delay of about 1.5 h in the transit time of the absorbing part of the gastrointestinal tract. The addition of ammonium myristate improves the availability of nitrofurantoin from a slow releasing dosage form - an average increase is 23.8% of the total amount of nitrofurantoin excreted in the urine compared to the values obtained from the reference dosage form without the additional substance. The kinetics of renal elimination of nitrofurantoin is characterized by the longer duration of urinary excretion.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
Temocillin was marketed by Beecham Pharmaceuticals in the UK in the 1980s but achieved little commercial success and was withdrawn, though it remained available via the manufacturer’s medical department. Presently licensed to Eumedica, temocillin is being re-launched in the UK and Belgium for treating UTI, sepsis, and respiratory infections by ESBL (Extended-spectrum beta-lactamases) and AmpC-producing Enterobacteriaceae. It acts by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. It irreversibly binds to the active site of specific transpeptidases and carboxypeptidases known as Penicillin Binding Proteins (PBP), preventing peptidoglycan production.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
TEICOPLANIN A2-5 is a component of a teicoplanin complex antibiotic, which consist of six closely related glycopeptide subcomponents. TEICOPLANIN A2-5 being the most lipophilic in protein binding. Bacteria treated with the drug failed to incorporate GlcNAc, a peptidoglycan precursor, whereas they continued to synthesize DNA, RNA, and protein. The cell wall inhibition was accompanied by an accumulation of UDP-MurNAc-pentapeptide, thus indicating that the antibiotic interferes with the polymerization of the peptidoglycan but not with the synthesis of soluble precursors. Teicoplanin is indicated in adults and in children from birth for the parenteral treatment of the following infections: complicated skin and soft tissue infections; bone and joint infections; complicated urinary tract infections; infective endocarditis; bacteraemia that occurs in association with any of the indications listed above. The following side-effects may occur: nausea, vomiting, diarrhea and stomach pain, skin rash and pruritus, bronchospasm, renal impairment. Teicoplanin should be administrated with caution in patients receiving concurrent nephrotoxic or ototoxic drugs, such as aminoglycosides, amphotericin B, cyclosporine and frusemide.
Status:
Possibly Marketed Outside US
Source:
Targocid by Gruppo Lepetit
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Teicoplanin A2-3 is a major component of the teicoplanin complex, a glycopeptide antibiotic produced by A. teichomyceticus that is broadly effective against Gram-positive bacteria in vitro. Bacteria treated with the drug failed to incorporate GlcNAc, a peptidoglycan precursor, whereas they continued to synthesize DNA, RNA, and protein. The cell wall inhibition was accompanied by an accumulation of UDP-MurNAc-pentapeptide, thus indicating that the antibiotic interferes with the polymerization of the peptidoglycan but not with the synthesis of soluble precursors. Teicoplanin is indicated in adults and in children from birth for the parenteral treatment of the following infections: complicated skin and soft tissue infections; bone and joint infections; complicated urinary tract infections; infective endocarditis; bacteremia that occurs in association with any of the indications listed above. The following side-effects may occur -- nausea, vomiting, diarrhea and stomach pain, skin rash and pruritus, bronchospasm, renal impairment. Teicoplanin should be administrated with caution in patients receiving concurrent nephrotoxic or ototoxic drugs, such as aminoglycosides, amphotericin B, cyclosporine, and frusemide.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Diiodotyrosine (DIT) is a regulatory ligand for thyroid peroxidase, enzyme, which is involved in the production of thyroxine (T4) and triiodothyronine (T3), the thyroid hormones. Diiodotyrosine was proposed to be a new marker of leukocyte phagocytic activity in sepsis and severe infections.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Carumonam is a monobactam antibacterial agent. It was highly active in vitro against members of the family Enterobacteriaceae, Pseudomonas aeruginosa, and Haemophilus influenzae and weakly active against Streptococcus pneumoniae, but it was not active against Staphylococcus aureus. The excellent activity of carumonam against Gram-negative bacteria is related to its high affinity for their penicillin-binding proteins. It is indicated for the treatment of urinary tract infections, chronic respiratory infections, biliary tract infections, peritonitis, sepsis. Another factor that contributes to the excellent activity of carumonam against Gram-negative bacteria is its resistance to beta-lactamases. Adverse effects of the carumonam were limited to phlebitis at the intravenous infusion site; bloody diarrhea.