U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 18 results

Gavinostat is an orally bioavailable hydroxymate inhibitor of histone deacetylase (HDAC) with potential anti-inflammatory, anti-angiogenic, and antineoplastic activities. Gavinostat inhibits class I and class II HDACs, resulting in an accumulation of highly acetylated histones, followed by the induction of chromatin remodeling and an altered pattern of gene expression. At low, nonapoptotic concentrations, this agent inhibits the production of pro-inflammatory cytokines such as tumor necrosis factor- (TNF-), interleukin-1 (IL-1), IL-6 and interferon-gamma. It is currently in phase 2 trials for Myeloproliferative disorders, Polycythaemia vera and Phase III for Duchenne muscular dystrophy announced. In clinical trials of givinostat as a salvage therapy for advanced Hodgkin's lymphoma, the most common adverse reactions were fatigue, mild diarrhea or abdominal pain, moderate thrombocytopenia, and mild leukopenia.
Fedratinib (SAR-302503, TG-101348) is a selective small-molecule inhibitor of Janus kinase-2. Fedratinib demonstrated therapeutic efficacy in a murine model of myeloproliferative disease. Sanofi was developing Fedratinib for the treatment of myeloproliferative diseases and solid tumors. The clinical development of fedratinib was terminated after reports of Wernicke's encephalopathy in myelofibrosis patients.
Ruxolitinib (trade names Jakafi and Jakavi, by Incyte Pharmaceuticals and Novartis) is a drug for the treatment of intermediate or high-risk myelofibrosis, a type of myeloproliferative disorder that affects the bone marrow. It is also being investigated for the treatment of other types of cancer (such as lymphomas and pancreatic cancer), for polycythemia vera, for plaque psoriasis, and for alopecia areata. Myelofibrosis (MF) is a myeloproliferative neoplasm (MPN) known to be associated with dysregulated JAK1 and JAK2 signaling. Ruxolitinib is a Janus-associated kinase (JAK) inhibitor with potential antineoplastic and immunomodulating activities. Ruxolitinib specifically binds to and inhibits protein tyrosine kinases JAK 1 and 2, which may lead to a reduction in inflammation and an inhibition of cellular proliferation. The JAK-STAT (signal transducer and activator of transcription) pathway plays a key role in the signaling of many cytokines and growth factors and is involved in cellular proliferation, growth, hematopoiesis, and the immune response; JAK kinases may be upregulated in inflammatory diseases, myeloproliferative disorders, and various malignancies. In a mouse model of JAK2V617F-positive MPN, ruxolitinib prevented splenomegaly, preferentially decreased JAK2V617F mutant cells in the spleen and decreased circulating inflammatory cytokines (eg, TNF-α, IL-6). Ruxolitinib was initially synthesized at Incyte Corporation that acquired the rights to develop and commercialize the drug in US. Incyte amended its Collaboration and License Agreement with Novartis, granting Novartis exclusive research, development and commercialization rights for ruxolitinib outside the U.S.
Lestaurtinib (CEP-701, KT-5555) is an orally bio-available polyaromatic indolocarbazole alkaloid derived from K-252a. Lestaurtinib is a multi-targeted tyrosine kinase inhibitor which has been shown to potently inhibit FLT3 at nanomolar concentrations in preclinical studies, leading to its rapid development as a potential targeted agent for treatment of AML. Phase I studies have shown lestaturtinib to be an active agent particularly when used in combination with cytotoxic drugs. Currently, Phase II and Phase III studies are underway aiming to establish the future of this agent as a treatment option for patients with FLT3-ITD AML.
Status:
Investigational
Source:
NCT00595829: Phase 1 Interventional Terminated Polycythemia Vera
(2007)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



XL019 is a potent and selective JAK2 inhibitor. XL019 shows 50-fold or greater selectivity for JAK2, versus a panel of over 100 serine/threonine and tyrosine kinases, including other members of the JAK family. XL019 is non-selective for JAK2V617F or wild-type JAK2 and potently inhibits STAT3 and STAT5 phosphorylation in cells harboring either JAK2V617F or wild-type JAK2. Unfortunately, XL019 treatment was associated with the unexpected occurrence of neurotoxicity. Phase I clinical trials have been terminated.
Status:
US Previously Marketed
First approved in 1966

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Pipobroman (trade names Vercite, Vercyte) is an anti-cancer drug that probably acts as an alkylating agent. It is marketed by Abbott Laboratories. Pipobroman (PB) has well documented clinical activity in polycythemia vera (PV) and essential thrombocythemia (ET). The mechanism of action is uncertain but pipobroman is thought to alkylate DNA leading to disruption of DNA synthesis and eventual cell death
Status:
Possibly Marketed Outside US
Source:
Cymerin by Mitsubishi Tanabe Pharma
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Ranimustine (tradename Cymerin; also known as MCNU) is a nitrosourea alkylating agent approved in Japan for the treatment of chronic myelogenous leukemia and polycythemia vera. It has never been filed for FDA evaluation in the United States, where it is not marketed.
Status:
Possibly Marketed Outside US
Source:
Mustargen by Gilman, A.|Goodman, L.S.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Mechlorethamine Oxide was approved by the FDA in 1949 for the treatment of hematologic malignancies, alkylating agents are the oldest class of anticancer agents. A biologic alkylating agent exerts its cytotoxic effects by forming DNA adducts and DNA interstrand crosslinks, thereby inhibiting rapidly proliferating cells. Mechlorethamine Oxide is an antineoplastic agent used to treat Hodgkin desease and Lymphoma. Known under the brand names of Mustargen and Valchlor in USA. The FDA granted marketing approval for the orphan drug Valchlor (mechlorethamine) gel on August 23, 2013 for the topical treatment of stage IA and IB mycosis fungoides-type cutaneous T-cell lymphoma (CTCL) in patients who have received prior skin-directed therapy. Each tube of Valchlor contains 0.016% of mechlorethamine which is equivalent to 0.02% mechlorethamine HCL.
Gavinostat is an orally bioavailable hydroxymate inhibitor of histone deacetylase (HDAC) with potential anti-inflammatory, anti-angiogenic, and antineoplastic activities. Gavinostat inhibits class I and class II HDACs, resulting in an accumulation of highly acetylated histones, followed by the induction of chromatin remodeling and an altered pattern of gene expression. At low, nonapoptotic concentrations, this agent inhibits the production of pro-inflammatory cytokines such as tumor necrosis factor- (TNF-), interleukin-1 (IL-1), IL-6 and interferon-gamma. It is currently in phase 2 trials for Myeloproliferative disorders, Polycythaemia vera and Phase III for Duchenne muscular dystrophy announced. In clinical trials of givinostat as a salvage therapy for advanced Hodgkin's lymphoma, the most common adverse reactions were fatigue, mild diarrhea or abdominal pain, moderate thrombocytopenia, and mild leukopenia.
Gavinostat is an orally bioavailable hydroxymate inhibitor of histone deacetylase (HDAC) with potential anti-inflammatory, anti-angiogenic, and antineoplastic activities. Gavinostat inhibits class I and class II HDACs, resulting in an accumulation of highly acetylated histones, followed by the induction of chromatin remodeling and an altered pattern of gene expression. At low, nonapoptotic concentrations, this agent inhibits the production of pro-inflammatory cytokines such as tumor necrosis factor- (TNF-), interleukin-1 (IL-1), IL-6 and interferon-gamma. It is currently in phase 2 trials for Myeloproliferative disorders, Polycythaemia vera and Phase III for Duchenne muscular dystrophy announced. In clinical trials of givinostat as a salvage therapy for advanced Hodgkin's lymphoma, the most common adverse reactions were fatigue, mild diarrhea or abdominal pain, moderate thrombocytopenia, and mild leukopenia.

Showing 1 - 10 of 18 results