U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Lurbinectedin (PM-01183) - is a synthetic tetrahydropyrrolo [4, 3, 2-de]quinolin-8(1H)-one alkaloid analogue with potential antineoplastic activity. Lurbinectedin covalently binds to residues lying in the minor groove of DNA, which may result in delayed progression through S phase, cell cycle arrest in the G2/M phase and cell death. Lurbinectedin is a novel anticancer agent currently undergoing late-stage (Phase II /III) clinical evaluation in platinum-resistant ovarian, BRCA1/2-mutated breast and small-cell lung cancer. Lurbinectedin is structurally related to trabectedin and it inhibits active transcription and the DNA repair machinery in tumour cells.
Selinexor (KPT-330) is a first in class XPO1 antagonist being evaluated in multiple later stage clinical trials in patients with relapsed and/or refractory hematological and solid tumor malignancies.
Talazoparib (BMN 673) demonstrates excellent potency, inhibiting PARP1 and PARP2 enzyme activity. It inhibits PARP-mediated PARylation in a whole-cell assay and prevents proliferation of cancer cells carrying mutant BRCA1/2. Talazoparib is orally available, displaying favorable pharmacokinetic properties and remarkable antitumor efficacy in the BRCA1 mutant MX-1 breast cancer xenograft model following oral administration as a single-agent or in combination with chemotherapy agents such as temozolomide and cisplatin. Medivation (a subsidiary of Pfizer) is developing talazoparib (MDV 3800, formerly BMN 673 and LT 673) for the treatment of genetically defined cancers. On October 16, 2018, the FDA approved talazoparib (TALZENNA, Pfizer Inc.) for patients with deleterious or suspected deleterious germline BRCA-mutated (gBRCAm), HER2‑negative locally advanced or metastatic breast cancer.
Fostamatinib is a pro-drug of a Syk inhibitor R406 initially developed by Rigel Pharmaceuticals, but then in-licensed by AstraZeneca. It reached phase III of clinical trials for such diseases as Rheumatoid Arthritis and Immune Thrombocytopenic Purpura, however, AstraZeneca decided not to proceed with regulatory filings and return the rights to the compound to Rigel Pharmaceuticals. In 2018 the drug was approved by the FDA for treatment of chronic immune thrombocytopenia. Fostamatinib is being developed for Autoimmune Hemolytic Anemia (phase II), graft versus host disease (phase I) and ovarian cancer (phase I).
Rucaparib is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated for the treatment of advanced mutant BRCA ovarian cancer. Rucaparib is being investigated in clinical trials against prostate cancer, breast cancer and other neoplasms.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Trabectedin (ET-743) is a marine alkaloid isolated from the Caribbean tunicate Ecteinascidia turbinata. Trabectedin was approved for the treatment of liposarcoma or leiomyosarcoma (USA and Europe) and ovarian cancer (only in Europe). Trabectedin exerts its anti-cancer action by binding guanine residues in the minor groove of DNA. The binding prevents DNA from interacting with transcription factors and the reparation system and results in perturbation of the cell cycle and eventual cell death.
Olaparib is an oral inhibitor of poly (ADP-ribose) polymerase enzymes, including PARP1, PARP2, and PARP3 which are involved in normal cellular homeostasis, such as DNA transcription, cell cycle regulation, and DNA repair. Olaparib has shown activity in ovarian and breast tumors with known BRCA mutations and was the first FDA approved drug in this class. Lynparza (olaparib) is indicated for treatment of gBRCA-mutated advanced ovarian cancer. Its use together with other chemotherapy medicines can lead to increased effects on the blood resulting in reduction in the numbers of white blood cells and platelets, and anaemia.
Amifostine is an organic thiophosphate cytoprotective agent known chemically as 2-[(3¬ aminopropyl)amino]ethanethiol dihydrogen phosphate (ester), it’s adjuvant used in cancer chemotherapy and radiotherapy involving DNA-binding chemotherapeutic agents. It is marketed under the trade name Ethyol. Amifostine is a prodrug and is dephosphorylated by alkaline phosphatase in tissues to a pharmacologically active free thiol metabolite. This metabolite is believed to be responsible for the reduction of the cumulative renal toxicity of cisplatin and for the reduction of the toxic effects of radiation on normal oral tissues. The ability of Ethyol to differentially protect normal tissues is attributed to the higher capillary alkaline phosphatase activity, higher pH and better vascularity of normal tissues relative to tumor tissue, which results in a more rapid generation of the active thiol metabolite as well as a higher rate constant for uptake into cells. The higher concentration of the thiol metabolite in normal tissues is available to bind to, and thereby detoxify, reactive metabolites of cisplatin. This thiol metabolite can also scavenge reactive oxygen species generated by exposure to either cisplatin or radiation. Healthy cells are preferentially protected because amifostine and metabolites are present in healthy cells at 100-fold greater concentrations than in tumor cells.
Aldoxorubicin (INNO-206) is a tumor-targeted doxorubicin conjugate developed by CytRx for treating relapsed and refractory sarcomas, especially L-sarcomas. Aldoxorubicin is a rationally-engineered cytotoxic which delivers a well-established anti-cancer agent, doxorubicin, into the tumor. Currently, in late-stage clinical trials, Aldoxorubicin appears to overcome the key limitations of doxorubicin, including cumulative dose restrictions. Aldoxorubicin utilizes an acid-sensitive linker that selectively binds to albumin, which may allow the cytotoxic payload to preferentially accumulate in the tumor and potentially spare the surrounding healthy tissue. This mechanism leverages the tumor's low pH environment and accompanying dependency upon circulating albumin to fuel growth, to enable the delivery of multifold times the standard dosing of doxorubicin. The preferential uptake of Aldoxorubicin by tumor tissue and the acid sensitive release of doxorubicin allow for Aldoxorubicin to be a very promising anticancer agent. In phase I and II trials, Aldoxorubicin demonstrates superior efficacy over doxorubicin. Although the studies were not powered for OS, Aldoxorubicin shows improved PFS and tumor response in comparison to doxorubicin. The safety profile was also comparable to that of doxorubicin. Similarly, results from the recent phase III study showed a benefit in PFS in the leiomyosarcoma subtypes.
AT-406 (DEBIO-1143, SM-406), is a potent and orally bioavailable Smac mimetic and an antagonist of the inhibitor of apoptosis proteins (IAPs). AT-406 inhibits cancer cell growth in various human cancer cell lines. It has good oral bioavailability in mice, rats, non-human primates, and dogs, is highly effective in induction of apoptosis in xenograft tumors, and is capable of complete inhibition of tumor growth. Debiopharm under a licence from Ascenta Therapeutics is developing AT-406 for the treatment of cancers.