{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2024)
Source:
ANDA215178
(2024)
Source URL:
First approved in 1974
Source:
DOXORUBICIN HYDROCHLORIDE by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Doxorubicin is an antineoplastic in the anthracycline class. General properties of drugs in this class include: interaction with DNA in a variety of different ways including intercalation (squeezing between the base pairs), DNA strand breakage and inhibition with the enzyme topoisomerase II. Most of these compounds have been isolated from natural sources and antibiotics. However, they lack the specificity of the antimicrobial antibiotics and thus produce significant toxicity. The anthracyclines are among the most important antitumor drugs available. Doxorubicin is widely used for the treatment of several solid tumors while daunorubicin and idarubicin are used exclusively for the treatment of leukemia. Doxorubicin may also inhibit polymerase activity, affect regulation of gene expression, and produce free radical damage to DNA. Doxorubicin possesses an antitumor effect against a wide spectrum of tumors, either grafted or spontaneous. Doxorubicin is used to produce regression in disseminated neoplastic conditions like acute lymphoblastic leukemia, acute myeloblastic leukemia, Wilms’ tumor, neuroblastoma, soft tissue and bone sarcomas, breast carcinoma, ovarian carcinoma, transitional cell bladder carcinoma, thyroid carcinoma, gastric carcinoma, Hodgkin’s disease, malignant lymphoma and bronchogenic carcinoma in which the small cell histologic type is the most responsive compared to other cell types. Doxorubicin is also indicated for use as a component of adjuvant therapy in women with evidence of axillary lymph node involvement following resection of primary breast cancer.
Status:
Investigational
Source:
NCT04066244: Phase 2 Interventional Terminated Amyotrophic Lateral Sclerosis
(2019)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
BLZ 945, an orally active antagonist of the colony-stimulating factor1
receptor (CSF1R), is being developed by Novartis and Celgene Corporation for the treatment of advanced solid tumors and tumor-induced osteolytic lesions in bone and skeletal-related events. Phase I/II development for solid tumors is underway in the US, Italy, Spain, and Singapore. Preclinical trials were ongoing for tumor-induced osteolysis in Europe and the US. However, no recent reports of development had been identified for this indication.
Status:
Investigational
Source:
NCT04055649: Phase 2 Interventional Recruiting Malignant Ovarian Epithelial Tumor
(2020)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
TIC10 (TIC10 isomer or ONC201 isomer) is a potent, orally active, and stable small molecule and is an efficacious antitumor therapeutic agent that acts on tumor cells and their microenvironment to enhance the concentrations of the endogenous tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). The isomeric structure of TIC10/ONC201 is critical to its activity: anti-cancer activity is associated with the angular structure and not the linear TIC10 isomer. TIC10 transcriptionally induces a sustained up-regulation TRAIL in tumors and normal cells in a p53-independent manner. TIC10 inactivates kinases Akt and extracellular signal-regulated kinase (ERK), leading to the translocation of Foxo3a into the nucleus, where it binds to the TRAIL promoter to up-regulate gene transcription. TIC10 crosses the blood-brain barrier. TIC10 treatment caused tumor regression in the HCT116 p53−/− xenograft, RKO human colon cancer xenograft–bearing mice and human triple-negative breast cancer xenografts and significantly prolonged the survival of Eμ-myc transgenic mice, which spontaneously develop metastatic lymphoma from weeks 9 to 12 of age by 4 weeks.
Status:
Investigational
Source:
NCT00332202: Phase 3 Interventional Completed Non Hodgkin Lymphoma
(2006)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Enzastaurin is a serine/threonine kinase inhibitor that showed antiangiogenic, antiproliferative, and proapoptotic properties in vitro and antitumor activity in vivo in a xenograft Waldenström macroglobulinemia (WM) model. Enzastaurin (LY317615) is a potent PKCβ selective inhibitor. Enzastaurin suppresses angiogenesis and was advanced for clinical development based upon this antiangiogenic activity. Enzastaurin suppresses tumor growth through multiple mechanisms: direct suppression of tumor cell proliferation and the induction of tumor cell death coupled to the indirect effect of suppressing tumor-induced angiogenesis. Enzastaurin is an orally administered drug that was intended for the treatment of solid and haematological cancers. Enzastaurin had shown encouraging preclinical results for the prevention of angiogenesis, inhibition of proliferation and induction of apoptosis as well as showing limited cytotoxicity within phase I clinical trials. However, during its assessment in phase II and III clinical trials the efficacy of enzastaurin was poor both in combination with other drugs and as a single agent. Eli Lilly discontinued development of enzastaurin after top-line data from the double-blind, international Phase III PRELUDE trial in 758 DLBCL patients showed that enzastaurin missed the primary endpoint of improving DFS vs. placebo.
Status:
Investigational
Source:
NCT00332202: Phase 3 Interventional Completed Non Hodgkin Lymphoma
(2006)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Enzastaurin is a serine/threonine kinase inhibitor that showed antiangiogenic, antiproliferative, and proapoptotic properties in vitro and antitumor activity in vivo in a xenograft Waldenström macroglobulinemia (WM) model. Enzastaurin (LY317615) is a potent PKCβ selective inhibitor. Enzastaurin suppresses angiogenesis and was advanced for clinical development based upon this antiangiogenic activity. Enzastaurin suppresses tumor growth through multiple mechanisms: direct suppression of tumor cell proliferation and the induction of tumor cell death coupled to the indirect effect of suppressing tumor-induced angiogenesis. Enzastaurin is an orally administered drug that was intended for the treatment of solid and haematological cancers. Enzastaurin had shown encouraging preclinical results for the prevention of angiogenesis, inhibition of proliferation and induction of apoptosis as well as showing limited cytotoxicity within phase I clinical trials. However, during its assessment in phase II and III clinical trials the efficacy of enzastaurin was poor both in combination with other drugs and as a single agent. Eli Lilly discontinued development of enzastaurin after top-line data from the double-blind, international Phase III PRELUDE trial in 758 DLBCL patients showed that enzastaurin missed the primary endpoint of improving DFS vs. placebo.
Status:
Investigational
Source:
NCT00689221: Phase 3 Interventional Completed Glioblastoma
(2008)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cilengitide is a cyclized Arg-Gly-Glu (RGD)-containing pentapeptide that selectively blocks activation of the αvβ3 and αvβ5 integrins. Its precursor was first synthesized in 1995 as c(RGDfV), and later modified by the incorporation of N-methyl Val c(RGDfMetV), generating the current form of the drug. Cilengitide displays subnanomolar antagonistic activity for αvβ3 and αvβ5, and is the first integrin antagonist evaluated in clinical phase I and II trials for treatment of glioblastoma and several other tumor types. Cilengitide-induced glioma cell death and inhibition of blood vessel formation may use different molecular mechanisms, including regulation of tumor hypoxia and activation of apoptotic pathways. Cilengitide inhibits cell signaling through FAK-Src-Akt and Erk mediated pathways in endothelial and tumor cells and attenuates the effect of VEGF stimulation on growth factor signaling. Cilengitide has shown encouraging activity in patients with glioblastoma as single agent, and in association with standard RT and temozolomide.
Status:
Investigational
Source:
NCT00689221: Phase 3 Interventional Completed Glioblastoma
(2008)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cilengitide is a cyclized Arg-Gly-Glu (RGD)-containing pentapeptide that selectively blocks activation of the αvβ3 and αvβ5 integrins. Its precursor was first synthesized in 1995 as c(RGDfV), and later modified by the incorporation of N-methyl Val c(RGDfMetV), generating the current form of the drug. Cilengitide displays subnanomolar antagonistic activity for αvβ3 and αvβ5, and is the first integrin antagonist evaluated in clinical phase I and II trials for treatment of glioblastoma and several other tumor types. Cilengitide-induced glioma cell death and inhibition of blood vessel formation may use different molecular mechanisms, including regulation of tumor hypoxia and activation of apoptotic pathways. Cilengitide inhibits cell signaling through FAK-Src-Akt and Erk mediated pathways in endothelial and tumor cells and attenuates the effect of VEGF stimulation on growth factor signaling. Cilengitide has shown encouraging activity in patients with glioblastoma as single agent, and in association with standard RT and temozolomide.
Status:
Investigational
Source:
NCT01746979: Phase 3 Interventional Completed Metastatic or Locally Advanced Unresectable Pancreatic Adenocarcinoma
(2012)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Evofosfamide, also formerly known as TH-302, is an investigational hypoxia-activated prodrug and is used to target cancerous cells under hypoxic conditions, which is a feature possessed by multiple solid tumors including glioblastoma and pancreatic cancer. Within regions of tumor hypoxia, evofosfamide releases bromo isophosphoramide mustard (Br-IPM), a potent DNA alkylating agent that kills tumor cells by forming DNA crosslinks. Once activated in hypoxic tissues, Br-IPM can also diffuse into surrounding oxygenated regions of the tumor and kill cells there via a “bystander effect”. Because of its preferential activation in the targeted hypoxic regions of solid tumors, evofosfamide may be less likely to produce broad systemic toxicity seen with untargeted cytotoxic chemotherapies.
Status:
Investigational
Source:
NCT02452008: Phase 2 Interventional Active, not recruiting Prostate Cancer
(2016)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Galunisertib is a potent inhibitor of TGF beta type 1 receptor. The drug is under clinical development for the treatment of different cancers: pancreatic, hepatocellular, breast, rectal, prostate etc. and reached phase 2/3 in patients with myelodysplastic syndromes.
Status:
Investigational
Source:
NCT00332202: Phase 3 Interventional Completed Non Hodgkin Lymphoma
(2006)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Enzastaurin is a serine/threonine kinase inhibitor that showed antiangiogenic, antiproliferative, and proapoptotic properties in vitro and antitumor activity in vivo in a xenograft Waldenström macroglobulinemia (WM) model. Enzastaurin (LY317615) is a potent PKCβ selective inhibitor. Enzastaurin suppresses angiogenesis and was advanced for clinical development based upon this antiangiogenic activity. Enzastaurin suppresses tumor growth through multiple mechanisms: direct suppression of tumor cell proliferation and the induction of tumor cell death coupled to the indirect effect of suppressing tumor-induced angiogenesis. Enzastaurin is an orally administered drug that was intended for the treatment of solid and haematological cancers. Enzastaurin had shown encouraging preclinical results for the prevention of angiogenesis, inhibition of proliferation and induction of apoptosis as well as showing limited cytotoxicity within phase I clinical trials. However, during its assessment in phase II and III clinical trials the efficacy of enzastaurin was poor both in combination with other drugs and as a single agent. Eli Lilly discontinued development of enzastaurin after top-line data from the double-blind, international Phase III PRELUDE trial in 758 DLBCL patients showed that enzastaurin missed the primary endpoint of improving DFS vs. placebo.