U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 20 of 20 results

Regorafenib (trade name Stivarga) is an orally bioavailable small molecule with potential antiangiogenic and antineoplastic activities. Regorafenib binds to and inhibits vascular endothelial growth factor receptors (VEGFRs) 2 and 3, and Ret, Kit, PDGFR and Raf kinases, which may result in the inhibition of tumor angiogenesis and tumor cell proliferation. VEGFRs are receptor tyrosine kinases that play important roles in tumor angiogenesis; the receptor tyrosine kinases RET, KIT, and PDGFR, and the serine/threonine-specific Raf kinase are involved in tumor cell signaling. In in vivo models, regorafenib demonstrated anti-angiogenic activity in a rat tumor model, and inhibition of tumor growth as well as anti-metastatic activity in several mouse xenograft models including some for human colorectal carcinoma. Since 2009 it was studied as a potential treatment option in multiple tumor types. Stivarga is approved by FDA to treat two different tumor types: metastatic colorectal cancer in patients who have been previously treated with fluoropyrimidine-, oxaliplatin- and irinotecan-based chemotherapy, an anti-VEGF therapy, and, if KRAS wild type, an anti-EGFR therapy (approved in 2012) and to treat patients with locally advanced, unresectable or metastatic gastrointestinal stromal tumor who have been previously treated with imatinib mesylate and sunitinib malate (approved in 2013).
Sunitinib (marketed as Sutent by Pfizer, and previously known as SU11248) is an oral, small-molecule, multi-targeted receptor tyrosine kinase inhibitor that was approved by the FDA for the treatment of renal cell carcinoma (RCC) and imatinib-resistant gastrointestinal stromal tumor. Sunitinib was evaluated for its inhibitory activity against a variety of kinases and was identified as an inhibitor of platelet-derived growth factor receptors (PDGFRa and PDGFRb), vascular endothelial growth factor receptors (VEGFR1, VEGFR2, and VEGFR3), stem cell factor receptor (KIT), Fms-like tyrosine kinase-3 (FLT3), colony-stimulating factor receptor Type 1 (CSF-1R), and the glial cell-line derived neurotrophic factor receptor (RET). Sunitinib adverse events are considered somewhat manageable and the incidence of serious adverse events low. The most common adverse events associated with sunitinib therapy are fatigue, diarrhea, nausea, anorexia, hypertension, yellow skin discoloration, hand-foot skin reaction, and stomatitis. In the placebo-controlled Phase III GIST study, adverse events which occurred more often with sunitinib than placebo included diarrhea, anorexia, skin discoloration, mucositis/stomatitis, asthenia, altered taste, and constipation. Dose reductions were required in 50% of the patients studied in RCC in order to manage the significant toxicities of this agent.
Sunitinib (marketed as Sutent by Pfizer, and previously known as SU11248) is an oral, small-molecule, multi-targeted receptor tyrosine kinase inhibitor that was approved by the FDA for the treatment of renal cell carcinoma (RCC) and imatinib-resistant gastrointestinal stromal tumor. Sunitinib was evaluated for its inhibitory activity against a variety of kinases and was identified as an inhibitor of platelet-derived growth factor receptors (PDGFRa and PDGFRb), vascular endothelial growth factor receptors (VEGFR1, VEGFR2, and VEGFR3), stem cell factor receptor (KIT), Fms-like tyrosine kinase-3 (FLT3), colony-stimulating factor receptor Type 1 (CSF-1R), and the glial cell-line derived neurotrophic factor receptor (RET). Sunitinib adverse events are considered somewhat manageable and the incidence of serious adverse events low. The most common adverse events associated with sunitinib therapy are fatigue, diarrhea, nausea, anorexia, hypertension, yellow skin discoloration, hand-foot skin reaction, and stomatitis. In the placebo-controlled Phase III GIST study, adverse events which occurred more often with sunitinib than placebo included diarrhea, anorexia, skin discoloration, mucositis/stomatitis, asthenia, altered taste, and constipation. Dose reductions were required in 50% of the patients studied in RCC in order to manage the significant toxicities of this agent.
Sunitinib (marketed as Sutent by Pfizer, and previously known as SU11248) is an oral, small-molecule, multi-targeted receptor tyrosine kinase inhibitor that was approved by the FDA for the treatment of renal cell carcinoma (RCC) and imatinib-resistant gastrointestinal stromal tumor. Sunitinib was evaluated for its inhibitory activity against a variety of kinases and was identified as an inhibitor of platelet-derived growth factor receptors (PDGFRa and PDGFRb), vascular endothelial growth factor receptors (VEGFR1, VEGFR2, and VEGFR3), stem cell factor receptor (KIT), Fms-like tyrosine kinase-3 (FLT3), colony-stimulating factor receptor Type 1 (CSF-1R), and the glial cell-line derived neurotrophic factor receptor (RET). Sunitinib adverse events are considered somewhat manageable and the incidence of serious adverse events low. The most common adverse events associated with sunitinib therapy are fatigue, diarrhea, nausea, anorexia, hypertension, yellow skin discoloration, hand-foot skin reaction, and stomatitis. In the placebo-controlled Phase III GIST study, adverse events which occurred more often with sunitinib than placebo included diarrhea, anorexia, skin discoloration, mucositis/stomatitis, asthenia, altered taste, and constipation. Dose reductions were required in 50% of the patients studied in RCC in order to manage the significant toxicities of this agent.
Sunitinib (marketed as Sutent by Pfizer, and previously known as SU11248) is an oral, small-molecule, multi-targeted receptor tyrosine kinase inhibitor that was approved by the FDA for the treatment of renal cell carcinoma (RCC) and imatinib-resistant gastrointestinal stromal tumor. Sunitinib was evaluated for its inhibitory activity against a variety of kinases and was identified as an inhibitor of platelet-derived growth factor receptors (PDGFRa and PDGFRb), vascular endothelial growth factor receptors (VEGFR1, VEGFR2, and VEGFR3), stem cell factor receptor (KIT), Fms-like tyrosine kinase-3 (FLT3), colony-stimulating factor receptor Type 1 (CSF-1R), and the glial cell-line derived neurotrophic factor receptor (RET). Sunitinib adverse events are considered somewhat manageable and the incidence of serious adverse events low. The most common adverse events associated with sunitinib therapy are fatigue, diarrhea, nausea, anorexia, hypertension, yellow skin discoloration, hand-foot skin reaction, and stomatitis. In the placebo-controlled Phase III GIST study, adverse events which occurred more often with sunitinib than placebo included diarrhea, anorexia, skin discoloration, mucositis/stomatitis, asthenia, altered taste, and constipation. Dose reductions were required in 50% of the patients studied in RCC in order to manage the significant toxicities of this agent.
Status:
Investigational
Source:
NCT01004081: Phase 2 Interventional Completed Breast Cancer
(2009)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



BIIB021 binds in the ATP-binding pocket of Hsp90, interferes with Hsp90 chaperone function, and results in client protein degradation and tumor growth inhibition. Hsp90 is overexpressed in many types of cancer and acts to stabilize malignancy producing oncoproteins. Therefore, inhibition of Hsp90 with BIIB021 leads to the degradation of oncoproteins that drive malignancy.
Dovitinib is an orally active small molecule that exhibits potent inhibitory activity against multiple receptor tyrosine kinases (RTK) involved in tumor growth and angiogenesis. Dovitinib strongly binds to fibroblast growth factor receptor 3 (FGFR3) and inhibits its phosphorylation, which may result in the inhibition of tumor cell proliferation and the induction of tumor cell death. In addition, this agent may inhibit other members of the RTK superfamily, including the vascular endothelial growth factor receptor; fibroblast growth factor receptor 1; platelet-derived growth factor receptor type 3; FMS-like tyrosine kinase 3; stem cell factor receptor (c-KIT); and colony-stimulating factor receptor 1; this may result in an additional reduction in cellular proliferation and angiogenesis, and the induction of tumor cell apoptosis. There are several ongoing Phase I/III clinical trials for dovitinib.
Status:
Investigational
Source:
NCT01362400: Phase 2 Interventional Completed Non Small Cell Lung Cancer
(2011)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Retaspimycin (IPI-504) was previously under development by manufacturer Infinity Pharmaceuticals in conjunction with MedImmune, a part of AstraZeneca. Retaspimycin is a small-molecule inhibitor of heat shock protein 90 (HSP90) with antiproliferative and antineoplastic activities. Retaspimycin binds to and inhibits the cytosolic chaperone functions of HSP90, which maintains the stability and functional shape of many oncogenic signaling proteins and may be overexpressed or overactive in tumor cells. Retaspimycin-mediated inhibition of HSP90 promotes the proteasomal degradation of oncogenic signaling proteins in susceptible tumor cell populations, which may result in the induction of apoptosis. Orphan drug designation was assigned to the compound by the FDA for the treatment of gastrointestinal stromal cancer (GIST). Infinity Pharmaceuticals has discontinued the development of retaspimycin (IPI-504) an inhibitor of the HSP-90) complex, for the treatment of cancer due to lack of efficacy in 1913.
Dovitinib is an orally active small molecule that exhibits potent inhibitory activity against multiple receptor tyrosine kinases (RTK) involved in tumor growth and angiogenesis. Dovitinib strongly binds to fibroblast growth factor receptor 3 (FGFR3) and inhibits its phosphorylation, which may result in the inhibition of tumor cell proliferation and the induction of tumor cell death. In addition, this agent may inhibit other members of the RTK superfamily, including the vascular endothelial growth factor receptor; fibroblast growth factor receptor 1; platelet-derived growth factor receptor type 3; FMS-like tyrosine kinase 3; stem cell factor receptor (c-KIT); and colony-stimulating factor receptor 1; this may result in an additional reduction in cellular proliferation and angiogenesis, and the induction of tumor cell apoptosis. There are several ongoing Phase I/III clinical trials for dovitinib.
Masitinib is a new orally administered tyrosine kinase inhibitor that targets mast cells and macrophages, important cells for immunity, through inhibiting a limited number of kinases. Based on its unique mechanism of action, masitinib can be developed in a large number of conditions in oncology, in inflammatory diseases, and in certain diseases of the central nervous system. In oncology due to its immunotherapy effect, masitinib can have an effect on survival, alone or in combination with chemotherapy. Through its activity on mast cells and consequently the inhibition of the activation of the inflammatory process, masitinib can have an effect on the symptoms associated with some inflammatory and central nervous system diseases and the degeneration of these diseases. AB Science is developing masitinib in multiple sclerosis and alzheimer's disease. Masitinib targets kinases, including c-Kit, PDGFR, and Lyn. It is used in the treatment of mast cell tumors in animals, specifically dogs. Since its introduction in November 2008 it has been distributed under the commercial name Masivet. It has been available in Europe since the second part of 2009. In the USA it is distributed under the name Kinavet.

Showing 11 - 20 of 20 results