{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2009)
Source:
NDA022314
(2009)
Source URL:
First approved in 1987
Source:
NDA019787
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
US Approved Rx
(2009)
Source:
NDA022314
(2009)
Source URL:
First approved in 1987
Source:
NDA019787
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
US Approved Rx
(2009)
Source:
NDA022314
(2009)
Source URL:
First approved in 1987
Source:
NDA019787
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
US Approved Rx
(2009)
Source:
NDA022314
(2009)
Source URL:
First approved in 1987
Source:
NDA019787
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
US Approved Rx
(2009)
Source:
NDA022314
(2009)
Source URL:
First approved in 1987
Source:
NDA019787
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
US Approved Rx
(2009)
Source:
NDA022314
(2009)
Source URL:
First approved in 1987
Source:
NDA019787
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Terutroban (S18886), a specific thromboxane A2 receptor antagonist, which improves endothelial function and has an antiatherosclerotic effect. The compound is under development by Servier for the potential treatment of cardiovascular diseases and coronary artery disease. In addition, it participated in phase III clinical trials PERFORM (Prevention of cerebrovascular and cardiovascular Events of ischemic origin with teRutroban in patients with a history oF ischemic strOke or tRansient ischeMic attack), but this study was stopped, and the result was not achieved.
Status:
Investigational
Source:
NCT00619164: Phase 2 Interventional Completed Acute Coronary Syndrome
(2007)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Atopaxar, also known as E 5555 is a novel reversible protease-activated receptor-1 (PAR-1) thrombin receptor antagonist. The inhibition of thrombin-mediated platelet activation by means of protease-activated receptor-1 inhibitors represents an attractive therapeutic option for patients with atherothrombotic disease processes. In preclinical studies, atopaxar demonstrated inhibition of thrombin receptor-activating peptides (TRAP)- and thrombin-induced platelet aggregation. Atopaxar was being developed by Eisai for acute coronary syndromes (ACS) and coronary disorders, including atherothrombosis, unstable angina pectoris and myocardial infarction. Atopaxar was in phase II clinical development in the US, EU and Japan. However, development was discontinued in May 2012.
Status:
Investigational
Source:
NCT00619164: Phase 2 Interventional Completed Acute Coronary Syndrome
(2007)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Atopaxar, also known as E 5555 is a novel reversible protease-activated receptor-1 (PAR-1) thrombin receptor antagonist. The inhibition of thrombin-mediated platelet activation by means of protease-activated receptor-1 inhibitors represents an attractive therapeutic option for patients with atherothrombotic disease processes. In preclinical studies, atopaxar demonstrated inhibition of thrombin receptor-activating peptides (TRAP)- and thrombin-induced platelet aggregation. Atopaxar was being developed by Eisai for acute coronary syndromes (ACS) and coronary disorders, including atherothrombosis, unstable angina pectoris and myocardial infarction. Atopaxar was in phase II clinical development in the US, EU and Japan. However, development was discontinued in May 2012.
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Nifenalol is the beta-receptor antagonist. It has optical isomers. The racemic mixture and the levo-isomer are active in antagonizing beta-receptors, but the dextro-isomer is inactive. The levo-isomer seems to be about twice as active in blocking beta-receptors as the racemate. Nifenalol is virtually devoid of local anesthetic properties in contrast to procaine, propranolol, and butidrine. Nifenalol exacerbated the fighting behavior in male mice by foot-shock. Nifenalol has been studied in patients with coronary artery disease. It afforded the coronary patient good protection against angina and ischemic changes in the EKG. It was further noted that nifenalol had no antiarrhythmic action and that it was devoid of evident side effects. Nifenalol possessed weak action against tremorine and oxotremorine induced tremor.