U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 561 - 570 of 609 results

Gallic acid is a polyphenol found in a variety of foods and herbs. Several studies have shown thta gallic acid has neuroprotective and anti-oxidant properties and can be a promising candidate for the treatment of cancer, cardiovascular diseases, neurodegenerative disorders, fatty liver disease and many others. Gallic acid acts by protecting cells against oxidative damage caused by reactive species often encountered in biological systems including, hydroxyl, superoxide and peroxyl and the non-radicals, hydrogen peroxide and hypochlorous acid. However, its ability to induce apoptosis, is mainly associated with its prooxidant, rather than antioxidant behavior.
Gallic acid is a polyphenol found in a variety of foods and herbs. Several studies have shown thta gallic acid has neuroprotective and anti-oxidant properties and can be a promising candidate for the treatment of cancer, cardiovascular diseases, neurodegenerative disorders, fatty liver disease and many others. Gallic acid acts by protecting cells against oxidative damage caused by reactive species often encountered in biological systems including, hydroxyl, superoxide and peroxyl and the non-radicals, hydrogen peroxide and hypochlorous acid. However, its ability to induce apoptosis, is mainly associated with its prooxidant, rather than antioxidant behavior.
Gallic acid is a polyphenol found in a variety of foods and herbs. Several studies have shown thta gallic acid has neuroprotective and anti-oxidant properties and can be a promising candidate for the treatment of cancer, cardiovascular diseases, neurodegenerative disorders, fatty liver disease and many others. Gallic acid acts by protecting cells against oxidative damage caused by reactive species often encountered in biological systems including, hydroxyl, superoxide and peroxyl and the non-radicals, hydrogen peroxide and hypochlorous acid. However, its ability to induce apoptosis, is mainly associated with its prooxidant, rather than antioxidant behavior.
Dihydroquercetin (also known as taxifolin) is a flavonoid found in grapes, citrus fruits, onions, green tea, olive oil, and several herbs (such as milk thistle). Besides its antitumor, hepatoprotective, and anti-inflammatory activities, it is a potent antioxidant, which may contribute to its cardiovascular and neuroprotective properties. The drug was tested in vitro against cancer cells and in vivo, in preclinical models of liver diseases and cardiovascular diseases. The possible mechanism of actions involves the induction of phase II detoxifying enzymes and the suppression of cytochrome P450-dependent monooxygenases, apoptosis and disruption of cancer cell cycle progression.
Sesamin is the most prominent lignan compound found in sesame seeds, one of the two highest sources of lignans in the human diet (the other being flax). Sesamin is catered to be a nutritional supplement that confers antioxidant and antiinflammatory effects (if touting its health properties) or possibly being an estrogen receptor modulator and fat burner (if targeting atheltes or persons wishing to lose weight). Sesamin has a few mechanisms, and when looking at it holistically it can be summed up as a fatty acid metabolism modifier. It appears to inhibit an enzyme known as delta-5-desaturase (Δ5-desaturase) which is a rate-limiting enzyme in fatty acid metabolism; inhibiting this enzyme results in lower levels of both eicosapentaenoic acid (EPA, one of the two fish oil fatty acids) as well as arachidonic acid, and this mechanism appears to be relevant following oral ingestion. The other main mechanism is inhibiting a process known as Tocopherol-ω-hydroxylation, which is the rate limiting step in the metabolism of Vitamin E; by inhibiting this enzyme, sesamin causes a relative increase of vitamin E in the body but particularly those of the gamma subset (γ-tocopherol and γ-tocotrienol) and this mechanism has also been confirmed to be active following oral ingestion. Sesamin is a potent and specific inhibitor of delta 5 desaturase in polyunsaturated fatty acid biosynthesis. Sesamin inhibits a particular CYP3A enzymes that is involved in vitamin E metabolism, where the enzyme initially ω-hydroxylates vitamin E (required step) and then the rest of vitamin E is subject to fat oxidation. By inhibiting this step, sesamin causes an increase in circulating and organ concentrations of vitamin E. Sesamin is thought to have PPARα activating potential in the liver, but it is uncertain how much practical relevance this has in humans due to this being a mechanism that differs between species.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Imidazole is a planer five-member heterocyclic ring with 3C and 2N atom and in ring N is present in 1st and 3rd positions. The imidazole ring is a constituent of several important natural products, including purine, histamine, histidine and nucleic acid. Being a polar and ionisable aromatic compound, it improves pharmacokinetic characteristics of lead molecules and thus used as a remedy to optimize solubility and bioavailability parameters of proposed poorly soluble lead molecules. The imidazole derivatives possess extensive spectrum of biological activities such as antibacterial, anticancer, antitubercular, antifungal, analgesic, and anti-HIV activities. The organic compound is used in the chemical industry as an intermediate in the production of pharmaceuticals, pesticides, dye intermediates, auxiliaries for textile dyeing and finishing, photographic chemicals and corrosion inhibitors. The chemical possesses properties (corrosivity to skin, irreversible damage to eyes, teratogenic effects) indicating a hazard for human health. Humans are exposed by consumer products (chemical concentrations up to 10%) and at the workplace. Therefore, the chemical is a candidate for further work. An exposure assessment and if indicated a risk assessment is recommended.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Imidazole is a planer five-member heterocyclic ring with 3C and 2N atom and in ring N is present in 1st and 3rd positions. The imidazole ring is a constituent of several important natural products, including purine, histamine, histidine and nucleic acid. Being a polar and ionisable aromatic compound, it improves pharmacokinetic characteristics of lead molecules and thus used as a remedy to optimize solubility and bioavailability parameters of proposed poorly soluble lead molecules. The imidazole derivatives possess extensive spectrum of biological activities such as antibacterial, anticancer, antitubercular, antifungal, analgesic, and anti-HIV activities. The organic compound is used in the chemical industry as an intermediate in the production of pharmaceuticals, pesticides, dye intermediates, auxiliaries for textile dyeing and finishing, photographic chemicals and corrosion inhibitors. The chemical possesses properties (corrosivity to skin, irreversible damage to eyes, teratogenic effects) indicating a hazard for human health. Humans are exposed by consumer products (chemical concentrations up to 10%) and at the workplace. Therefore, the chemical is a candidate for further work. An exposure assessment and if indicated a risk assessment is recommended.
Nerolidol (aka peruviol) is a naturally occurring sesquiterpene found in the essential oils of many types of plants and flowers. The aroma of nerolidol is woody and reminiscent of fresh bark. It is used as a flavoring agent and in perfumery. It is also used in non-cosmetic products such as detergents and cleansers. Additionally, it is known for several biological activities including antioxidant, anti-fungal, anticancer, and antimicrobial activities.
Status:
Possibly Marketed Outside US
Source:
NCT03355846: Phase 4 Interventional Completed Acute Anal Fissure
(2018)
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Since its first isolation in 1844, usnic acid has become the most extensively studied lichen metabolite and one of the few that are commercially available. Lichens belonging to usnic acid-containing genera have been used as crude drugs throughout the world. There are indications of usnic acid being a potentially interesting candidate for such activities as anti-inflammatory, analgesic, healing, antioxidant, antimicrobial, antiprotozoal, antiviral, larvicidal and UV protection. However, some studies reported the liver toxicity and contact allergy. Usnic acid reduced the production of Junin virus in infected Vero cells in a dependent dose manner, and 50% inhibition was obtained at an effective concentration (EC50) of 9.9 µM. Regarding the TCRV arenavirus, the effective concentration was 20.6 uM. The selectivity indexes (CC50/EC50) of usnic acid for JUNV and TCRV arenavirus were 6.8 and 3.2, respectively, indicating a specific antiviral activity against these viruses and not just a general consequence of its action on cellular toxicity.
Ursolic acid is a natural terpene compond found in a wide variety of plants but most well known for being in apple peels. Ursolic acid has a series of biological effects such as sedative, anti-inflammatory, anti-bacterial, anti-diabetic, antiulcer, antitumor etc. Ursolic acid has been shown to target multiple proinflammatory transcription factors, cell cycle proteins, growth factors, kinases, cytokines, chemokines, adhesion molecules, and inflammatory enzymes. Evidences suggest that ursolic acid could be used as a potential candidate to develop a comprehensive competent strategy towards the treatment and prevention of health disorders. Although the science is preliminary, it seems to be able to reduce fat accumulation and increase muscle mass gain when in a fed state, and to induce fat burning and preserve muscle mass when in a fasted state.

Showing 561 - 570 of 609 results