{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Investigational
Source:
NCT01374438: Phase 2 Interventional Completed Alzheimer's Disease
(2011)
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Mitoglitazone (previously known as MSDC-0160 or CAY-10415) is a mTOT (mitochondrial target of thiazolidinediones) modulator that targets the mitochondrial pyruvate carrier (MPC), which is a key controller of cellular metabolism. MSDC-0160 is modulated MPC and act as insulin sensitizers without activating PPAR gamma. (Mitoglitazone exhibits very low binding affinity and activity at PPARγ). Mitoglitazone has been used in trials phase II studying the treatment of Type 2 Diabetes and Alzheimer's disease; the treatment for diabetes was discontinued. In addition, MSDC-0160 has demonstrated significant neuroprotective effects in the En1+/- mouse model of Parkinson’s disease via modulation of the mTOR-autophagy signaling cascade.
Status:
Investigational
Source:
NCT01348737: Phase 1 Interventional Completed Alzheimer's Disease
(2011)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
AZD3839 is a potent and selective BACE1 inhibitor with about 14-fold selectivity over BACE2. In SH-SY5Y cells, AZD3839 efficiently decreases the Aβ40 levels and decreases the formation of sAPPβ. AZD3839 also decreases the Aβ40 levels secreted from C57BL/6 mouse primary cortical neurons, N2A cells, and Dunkin-Hartley guinea pig primary cortical neurons. AZD3839 causes in vitro BACE1 inhibition in the cell assay with the IC50 value of 16.7 nM. In C57BL/6 mice, AZD3839 (69 mg/kg, p.o.) causes a dose- and time-dependent reduction of plasma and brain Aβ. In guinea pig and non-human primates, AZD3839 also inhibits Aβ generation. AZD3839 has been used in phase I clinical trials studying the basic science of Safety and Tolerability. However future development has been discontinued.
Status:
Investigational
Source:
NCT02059785: Phase 2 Interventional Suspended Ischemic Stroke
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Pinocembrin (5,7-dihydroxyflavanone) is one of the primary flavonoids isolated from the variety of plants, mainly from Pinus heartwood, Eucalyptus, Populus, Euphorbia, and Sparattosperma leucanthum. Pinocembrin is a major flavonoid molecule incorporated as multifunctional in the pharmaceutical industry. Its vast range of pharmacological activities has been well researched including antimicrobial, anti-inflammatory, antioxidant, and anticancer activities. In addition, pinocembrin can be used as neuroprotective against cerebral ischemic injury with a wide therapeutic time window, which may be attributed to its antiexcitotoxic effects.
Status:
Investigational
Source:
NCT04538066: Phase 2 Interventional Completed Alzheimer Disease
(2020)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Bryostatin 1 is a macrocyclic lactone which can be isolated from the marine bryozoan, Bugula neritina. The effects of bryostatin 1 are attributed to its ability to selectively modulate the activity of two of the three subgroups of protein kinase C (PKC) isozymes. PKC isozymes are divided into three subgroups which differ in their molecular structures and co-factor requirements: classical PKC (cPKC), novel PKC (nPKC), and atypical PKC (aPKC). Bryostatin-1 modulates nPKC activity independent of a Ca2+ signaling. It activates cPKC only when associated with Ca2+ signaling. And, aPKC activity is not sensitive to bryostatin-1 administration. Ca2+ signals play an important role in synaptic transmission and information processing which creates a biological environment where Bryostatin-1 possesses a unique action profile. Bryostatin-1 will not affect cPKC activity in neurons which are not functioning as an active part of the signaling processing circuit with significant Ca2+influx and intracellular Ca2+ release. Bryostatin 1 is in phase II clinical trials for investigation as an anticancer agent; specifically for treatment of metastatic or recurrent head and neck cancer, ovarian epithelial cancer that has not responded to previous chemotherapy, and myelodysplastic syndrome. Bryostatin 1 has also generated interest as an investigational compound for the treatment of Alzheimer's disease.
Status:
Investigational
Source:
NCT01602393: Phase 2 Interventional Completed Alzheimer's Disease
(2012)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
CHF-5074 is a small molecule with a unique microglial modulating mechanism of action capable of selectively reducing pro-inflammatory activities of microglial cells while increasing their ability to remove neurotoxic amyloid beta (“Aβ”) aggregates in the brain by phagocytosis. CHF-5074 reduces Aβ42 and Aβ40 secretion, with an IC50 of 3.6 and 18.4 μM, respectively. Microglia are small cells that migrate through the brain to remove waste products, such as amyloid aggregates that cause inflammation and irreversible damage to nerve cells. Chronic dysfunction of microglia is increasingly believed to play an important role at the very beginnings of Alzheimer’s disease. The results from Chiesi’s human clinical studies corroborate the large body of data from published preclinical studies. In Alzheimer’s disease transgenic mouse models, CHF-5074 was shown to reduce neuroinflammation, inhibit brain amyloid β plaque deposits, reduce tau pathology, and reverse associated memory deficits. These findings indicate CHF-5074 acts simultaneously on several important therapeutic targets, and this neuroprotective multi-target approach may translate into preventing the memory loss that is the hallmark of Alzheimer’s disease.
Status:
Investigational
Source:
NCT01807026: Phase 1 Interventional Completed Alzheimer Disease
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
LY2886721 is a BACE inhibitor used for the treatment of Alzheimer's Disease. LY2886721 did not inhibit other aspartyl proteases such as cathepsin D, pepsin, and renin, and reduced Aβ in a dose-dependent manner in HEK293Swe cells and in primary neurons from PDAPP transgenic mice. LY2886721 was the first BACE inhibitor to reach Phase 2 clinical research. Lilly completed six Phase 1 studies of LY2886721’s safety, tolerability, and pharmacology in a total of 150 healthy volunteers and people with Alzheimer’s disease at doses of 1–70 mg. Single and multiple ascending oral dosing was accompanied by repeat CSF sampling in the hours and days thereafter. This was done to assess CSF penetration and target engagement by way of measuring levels of the drug, BACE1 substrate, and BACE1 cleavage products. The compound lowered CSF Aβ40, Aβ42, and sAPPβ concentrations while increasing sAPPα, consistent with expectations for BACE1 inhibition. Fourteen days of daily dosing reduced BACE1 activity by 50–75 percent, and CSF Aβ42 by 72 percent. No safety concerns were apparent in dosing up to six weeks
Status:
Investigational
Source:
NCT01791725: Phase 2 Interventional Completed Down Syndrome
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Scyllo-inositol (ELND005) is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Scyllo-inositol (ELND005) is a naturally occurring plant sugar alcohol found most abundantly in the coconut palm. It appears to accumulate in a number of human tissues and biofluids through dietary consumption. It has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. Although scyllo-inositol (ELND005) at pharmacologic doses may alter myo-inositol levels and indirectly affect phosphatidyl-inositol signaling, its main effects are thought to be binding and inhibition of beta-amyloid 42 peptide aggregation and formation of beta-amyloid fibrils. In transgenic animals, scyllo-inositol (ELND005) reduced brain beta-amyloid concentrations and plaque burden, preserved synaptic density, and improved learning deficits. Scyllo-inositol (ELND005) also appears to neutralize toxic effects of beta-amyloid oligomers, including amelioration of oligomer-induced synaptic loss, long-term potentiation inhibition, and memory deficits. Scyllo-inositol (ELND005) is an attractive candidate as a potential disease-modifying oral treatment for Alzheimer disease.
Status:
Investigational
Source:
NCT00637793: Phase 2 Interventional Completed Xerostomia
(2008)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
NGX267 is a partial muscarinic receptor agonist with functionally specific M1 and M3 receptor activity, developed by Torrey Pines Therapeutics(TPTX) for the treatment of Xerostomia, Alzheimer’s disease and cognitive deficits in schizophrenia. NGX-267 had been in phase II clinical trials for the treatment of Xerostomia, however, all researchers on this drug candidate were discontinued.
Status:
Investigational
Source:
NCT03515733: Phase 1 Interventional Completed Depression, Unipolar
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Pfizer was developing PF-4995274, an orally administered serotonin 4 receptor (5HT-4) agonist for the treatment of Alzheimer's disease. In 2011, the company discontinued the development of the compound.
Status:
Investigational
Source:
NCT01714713: Phase 3 Interventional Completed Schizophrenia
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Encenicline (EVP-6124; MT-4666) acts as a potent partial and selective agonist at alpha-7 nicotinic acetylcholine receptor. Encenicline significantly improved memory function in animal models. FORUM Pharmaceuticals (formerly EnVivo Pharmaceuticals) is developing encenicline for the treatment of cognition disorders such as schizophrenia and for Alzheimer's disease.