U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 41 - 50 of 1388 results

Elagolix (ABT-620) is an oral gonadotropin-releasing hormone antagonist being studied for the treatment of endometriosis and uterine fibroids. The U.S. Food and Drug Administration (FDA) approved AbbVie's elagolix under the brand name Orilissa as the first and only oral gonadotropin-releasing hormone (GnRH) antagonist specifically developed for women with moderate to severe endometriosis pain.
Dacomitinib is an oral, once-daily, pan-HER inhibitor. It is an irreversible inhibitor of HER-1 (EGFR), HER-2 and HER-4 tyrosine kinases. Dacomtinib is being evaluated in phase 3 clinical trials against nonsmall-cell lung cancer. Direct comparison with erlotinib did not show superiority of dacomtinib, but subgroup analysis have demonstrated that subgroup with exon 19 deletion had favorable outcomes with dacomitinib. In addition to nonsmall-cell lung cancer dacomtinib is being evaluated against esophagus, head and neck and other neoplasms. Due to its ability to pass through blood-brain barrier, dacomitinib can be used to treat brain tumors.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Tecovirimat (ST-246) is a low-molecular-weight compound (molecular weight = 376), that is potent (concentration that inhibited virus replication by 50% = 0.010 microM), selective (concentration of compound that inhibited cell viability by 50% = >40 microM), and active against multiple orthopoxviruses, including vaccinia, monkeypox, camelpox, cowpox, ectromelia (mousepox), and variola viruses. The antiviral activity is specific for orthopoxviruses and the compound does not inhibit the replication of other RNA- and DNA-containing viruses or inhibit cell proliferation at concentrations of compound that are antiviral. ST-246 targets vaccinia virus p37, a viral protein required for envelopment and secretion of extracellular forms of virus. The compound is orally bioavailable and protects multiple animal species from lethal orthopoxvirus challenge. rug substance and drug product processes have been developed and commercial scale batches have been produced using Good Manufacturing Processes (GMP). Human phase I clinical trials have shown that ST-246 is safe and well tolerated in healthy human volunteers. Based on the results of the clinical evaluation, once a day dosing should provide plasma drug exposure in the range predicted to be antiviral based on data from efficacy studies in animal models of orthopoxvirus disease.
(+)-alpha-Dihydrotetrabenazine (HTBZ) is an active component of tetrabenazine. Tetrabenazine is a mixture of closely-related compounds (isomers) and is readily metabolized in the human body to HTBZ and related isomers. Tetrabenazine is a drug for the symptomatic treatment of hyperkinetic movement disorder and is marketed under the trade names Nitoman in Canada and Xenazine in New Zealand and some parts of Europe, and is also available in the USA as an orphan drug. (+)-alpha-Dihydrotetrabenazine and related benzo[a]quinolizines have been labeled with tritium and carbon-11 radioisotopes and used for in vitro and in vivo studies of the VMAT2 in animal and human brain. Adeptio Pharmaceuticals is developing alpha-dihydrotetrabenazine (HTBZ) for the treatment of neurological disorders. It acts by inhibiting vesicular monoamine transporter 2 (VMAT2), thereby blocking the transport of dopamine into axon terminals or into storage vesicles.
Ribociclib, also known as LEE011, is an orally available cyclin-dependent kinase (CDK) inhibitor targeting cyclin D1/CDK4 and cyclin D3/CDK6 cell cycle pathway, with potential antineoplastic activity. CDK4/6 inhibitor LEE011 specifically inhibits CDK4 and 6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Inhibition of Rb phosphorylation prevents CDK-mediated G1-S phase transition, thereby arresting the cell cycle in the G1 phase, suppressing DNA synthesis and inhibiting cancer cell growth. Overexpression of CDK4/6, as seen in certain types of cancer, causes cell cycle deregulation. Ribociclib is in phase III clinical trials by Novartis for the treatment of postmenopausal women with advanced breast cancer. Phase II clinical trials are also in development for the treatment of liposarcoma, ovarian cancer, fallopian tube cancer, peritoneum cancer, endometrial cancer, and gastrointestinal cancer. Preregistration for Breast cancer (First-line therapy, Combination therapy, Late-stage disease) in the USA (PO) in November 2016.
Deutetrabenazine (trade name Austedo) is a vesicular monoamine transporter 2 (VMAT2) inhibitor indicated for the treatment of chorea associated with Huntington’s disease. The drug was developed by Auspex Pharmaceuticals and is being commercialized by Teva Pharmaceuticals. Deutetrabenazine is a deuterated derivative of tetrabenazine. The incorporation of deuterium in place of hydrogen at the sites of primary metabolism results in metabolic clearance being slowed, allowing less frequent dosing and better tolerability.
Niraparib (MK-4827) displays excellent PARP 1 and 2 inhibition. Inhibition of PARP in the context of defects in other DNA repair mechanisms provide a tumor specific way to kill cancer cells. Niraparib is in development with TESARO, under licence from Merck & Co, for the treatment of cancers (ovarian, fallopian tube and peritoneal cancer, breast cancer, prostate cancer and Ewing's sarcoma). Niraparib was characterized in a number of preclinical models before moving to phase I clinical trials, where it showed excellent human pharmacokinetics suitable for once a day oral dosing, achieved its pharmacodynamic target for PARP inhibition, and had promising activity in cancer patients. It is currently being tested in phase 3 clinical trials as maintenance therapy in ovarian cancer and as a treatment for breast cancer.
Naldemedine (Symproic) is an opioid antagonist indicated for the treatment of opioid-induced constipation (OIC) in adult patients with chronic non-cancer pain. Naldemedine is an opioid antagonist with binding affinities for mu-, delta-, and kappa-opioid receptors. Naldemedine functions as a peripherally-acting mu-opioid receptor antagonist in tissues such as the gastrointestinal tract, thereby decreasing the constipating effects of opioids. Naldemedine is a derivative of naltrexone to which a side chain has been added that increases the molecular weight and the polar surface area, thereby reducing its ability to cross the blood-brain barrier (BBB). Naldemedine is also a substrate of the P-glycoprotein (P-gp) efflux transporter. Based on these properties, the CNS penetration of naldemedine is expected to be negligible at the recommended dose levels, limiting the potential for interference with centrally-mediated opioid analgesia. Naldemedine was approved in 2017 in both the US and Japan for the treatment of Opioid-induced Constipation.
Ertugliflozin (PF-04971729) is a potent and selective sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor incorporating a unique dioxa-bicyclo[3.2.1]octane (bridged ketal) ring system. SGLT2 has become an important therapeutic target and several SGLT2-selective inhibitors are either approved or in clinical development for the management of blood glucose in patients with type 2 diabetes. Ertugliflozin demonstrated robust urinary glucose excretion in rats and an excellent preclinical safety profile. It was announced that FDA and EMA filing acceptances of three marketing applications for ertugliflozin-containing medicines for adults with type 2 diabetes.
Rucaparib is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated for the treatment of advanced mutant BRCA ovarian cancer. Rucaparib is being investigated in clinical trials against prostate cancer, breast cancer and other neoplasms.