{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Showing 1211 - 1217 of 1217 results
Status:
Possibly Marketed Outside US
Source:
Dexinling by Shenzhen Deyintang Biotechnology Co., Ltd.
(2022)
Source URL:
First approved in 2022
Source:
Dexinling by Shenzhen Deyintang Biotechnology Co., Ltd.
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Sesamin is a naturally occurring compound found in sesame oil and in the bark and fruit of certain plant species. SESAMIN, (±)- is a racemic dl-form. The dl-form is also known as fagarol, and may be isolated from the bark of various fagara species. Sesamin, either as the d-form or the dl-form, has now been found to possess psychotropic activity, i.e., administration of appropriate dosages to a human or animal subject elicits a psychotropic response. Sesamin is catered to be a nutritional supplement that confers antioxidant and antiinflammatory effects (if touting its health properties) or possibly being an estrogen receptor modulator and fat burner (if targeting athletes or persons wishing to lose weight).
Sesamin has a few mechanisms, and when looking at it holistically it can be summed up as a fatty acid metabolism modifier. It appears to inhibit an enzyme known as delta-5-desaturase (Δ5-desaturase) which is a rate-limiting enzyme in fatty acid metabolism; inhibiting this enzyme results in lower levels of both eicosapentaenoic acid (EPA, one of the two fish oil fatty acids) as well as arachidonic acid, and this mechanism appears to be relevant following oral ingestion. The other main mechanism is inhibiting a process known as Tocopherol-ω-hydroxylation, which is the rate-limiting step in the metabolism of Vitamin E; by inhibiting this enzyme, sesamin causes a relative increase of vitamin E in the body but particularly those of the gamma subset (γ-tocopherol and γ-tocotrienol) and this mechanism has also been confirmed to be active following oral ingestion. Sesamin is a potent and specific inhibitor of delta 5 desaturases in polyunsaturated fatty acid biosynthesis. Sesamin inhibits particular CYP3A enzymes that are involved in vitamin E metabolism, where the enzyme initially ω-hydroxylates vitamin E (required step) and then the rest of vitamin E is subject to fat oxidation. By inhibiting this step, sesamin causes an increase in circulating and organ concentrations of vitamin E. Sesamin is thought to have PPARα activating potential in the liver, but it is uncertain how much practical relevance this has in humans due to this being a mechanism that differs between species.
Status:
Possibly Marketed Outside US
First approved in 2017
Source:
NDA208447
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Niraparib (MK-4827) displays excellent PARP 1 and 2 inhibition. Inhibition of PARP in the context of defects in other DNA repair mechanisms provide a tumor specific way to kill cancer cells. Niraparib is in development with TESARO, under licence from Merck & Co, for the treatment of cancers (ovarian, fallopian tube and peritoneal cancer, breast cancer, prostate cancer and Ewing's sarcoma). Niraparib was characterized in a number of preclinical models before moving to phase I clinical trials, where it showed excellent human pharmacokinetics suitable for once a day oral dosing, achieved its pharmacodynamic target for PARP inhibition, and had promising activity in cancer patients. It is currently being tested in phase 3 clinical trials as maintenance therapy in ovarian cancer and as a treatment for breast cancer.
Status:
Possibly Marketed Outside US
First approved in 2017
Source:
NDA208447
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Niraparib (MK-4827) displays excellent PARP 1 and 2 inhibition. Inhibition of PARP in the context of defects in other DNA repair mechanisms provide a tumor specific way to kill cancer cells. Niraparib is in development with TESARO, under licence from Merck & Co, for the treatment of cancers (ovarian, fallopian tube and peritoneal cancer, breast cancer, prostate cancer and Ewing's sarcoma). Niraparib was characterized in a number of preclinical models before moving to phase I clinical trials, where it showed excellent human pharmacokinetics suitable for once a day oral dosing, achieved its pharmacodynamic target for PARP inhibition, and had promising activity in cancer patients. It is currently being tested in phase 3 clinical trials as maintenance therapy in ovarian cancer and as a treatment for breast cancer.
Status:
Possibly Marketed Outside US
First approved in 2017
Source:
NDA208447
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Niraparib (MK-4827) displays excellent PARP 1 and 2 inhibition. Inhibition of PARP in the context of defects in other DNA repair mechanisms provide a tumor specific way to kill cancer cells. Niraparib is in development with TESARO, under licence from Merck & Co, for the treatment of cancers (ovarian, fallopian tube and peritoneal cancer, breast cancer, prostate cancer and Ewing's sarcoma). Niraparib was characterized in a number of preclinical models before moving to phase I clinical trials, where it showed excellent human pharmacokinetics suitable for once a day oral dosing, achieved its pharmacodynamic target for PARP inhibition, and had promising activity in cancer patients. It is currently being tested in phase 3 clinical trials as maintenance therapy in ovarian cancer and as a treatment for breast cancer.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Icotinib is an orally available quinazoline-based inhibitor of epidermal growth factor receptor. It selectively inhibits the wild-type and several mutated forms of EGFR tyrosine kinase. The major organ of icotinib metabolism is the liver, with the primarily enzymes being CYP2C19 and CYP3A4 from the cytochrome P450 monooxygenase system. Icotinib Hydrochloride was approved for the treatment of patients with advanced stage Nonsmall cell lung cancer by the State Food and Drug Administration (SFDA) of China. The major drug related adverse reactions of the traditional cytotoxic agents include rash, diarrhea, severe bone marrow suppression, neuropathy, hair loss, and gastrointestinal reactions. Icotinib is under investigation as an active agent against other EGFR mutation-positive cancers, like lung adenocarcinoma, oesophageal cancer, nasopharyngeal cancer and others.
Status:
US Approved Rx
(2010)
Source:
NDA021879
(2010)
Source URL:
First marketed in 1921
Class:
POLYMER
Targets:
Quinidine is a pharmaceutical agent that acts as a class I antiarrhythmic agent (Ia) in the heart. It is a stereoisomer of quinine, originally derived from the bark of the cinchona tree. The drug causes increased action potential duration, as well as a prolonged QT interval. Like all other class I antiarrhythmic agents, quinidine primarily works by blocking the fast inward sodium current (INa). Quinidine's effect on INa is known as a 'use-dependent block'. This means at higher heart rates, the block increases, while at lower heart rates, the block decreases. The effect of blocking the fast inward sodium current causes the phase 0 depolarization of the cardiac action potential to decrease (decreased Vmax). Quinidine also blocks the slowly inactivating, tetrodotoxin-sensitive Na current, the slow inward calcium current (ICA), the rapid (IKr) and slow (IKs) components of the delayed potassium rectifier current, the inward potassium rectifier current (IKI), the ATP-sensitive potassium channel (IKATP) and Ito. Quinidine is also an inhibitor of the cytochrome P450 enzyme 2D6 and can lead to increased blood levels of lidocaine, beta blockers, opioids, and some antidepressants. Quinidine also inhibits the transport protein P-glycoprotein and so can cause some peripherally acting drugs such as loperamide to have central nervous system side effects, such as respiratory depression if the two drugs are coadministered. Quinidine can cause thrombocytopenia, granulomatous hepatitis, myasthenia gravis, and torsades de pointes, so is not used much today. Torsades can occur after the first dose. Quinidine-induced thrombocytopenia (low platelet count) is mediated by the immune system and may lead to thrombocytic purpura. A combination of dextromethorphan and quinidine has been shown to alleviate symptoms of easy laughing and crying (pseudobulbar affect) in patients with amyotrophic lateral sclerosis and multiple sclerosis. This drug is marketed as Nuedexta in the United States. Intravenous quinidine is also indicated for the treatment of Plasmodium falciparum malaria. However, quinidine is not considered the first-line therapy for P. falciparum. The recommended treatments for P. falciparum malaria, according to the Toronto Notes 2008, are a combination of either quinine and doxycycline or atovaquone and proguanil (Malarone). The drug is also effective for the treatment of atrial fibrillation in horses.
Status:
US Approved Rx
(2010)
Source:
NDA021879
(2010)
Source URL:
First marketed in 1921
Class:
POLYMER
Targets:
Quinidine is a pharmaceutical agent that acts as a class I antiarrhythmic agent (Ia) in the heart. It is a stereoisomer of quinine, originally derived from the bark of the cinchona tree. The drug causes increased action potential duration, as well as a prolonged QT interval. Like all other class I antiarrhythmic agents, quinidine primarily works by blocking the fast inward sodium current (INa). Quinidine's effect on INa is known as a 'use-dependent block'. This means at higher heart rates, the block increases, while at lower heart rates, the block decreases. The effect of blocking the fast inward sodium current causes the phase 0 depolarization of the cardiac action potential to decrease (decreased Vmax). Quinidine also blocks the slowly inactivating, tetrodotoxin-sensitive Na current, the slow inward calcium current (ICA), the rapid (IKr) and slow (IKs) components of the delayed potassium rectifier current, the inward potassium rectifier current (IKI), the ATP-sensitive potassium channel (IKATP) and Ito. Quinidine is also an inhibitor of the cytochrome P450 enzyme 2D6 and can lead to increased blood levels of lidocaine, beta blockers, opioids, and some antidepressants. Quinidine also inhibits the transport protein P-glycoprotein and so can cause some peripherally acting drugs such as loperamide to have central nervous system side effects, such as respiratory depression if the two drugs are coadministered. Quinidine can cause thrombocytopenia, granulomatous hepatitis, myasthenia gravis, and torsades de pointes, so is not used much today. Torsades can occur after the first dose. Quinidine-induced thrombocytopenia (low platelet count) is mediated by the immune system and may lead to thrombocytic purpura. A combination of dextromethorphan and quinidine has been shown to alleviate symptoms of easy laughing and crying (pseudobulbar affect) in patients with amyotrophic lateral sclerosis and multiple sclerosis. This drug is marketed as Nuedexta in the United States. Intravenous quinidine is also indicated for the treatment of Plasmodium falciparum malaria. However, quinidine is not considered the first-line therapy for P. falciparum. The recommended treatments for P. falciparum malaria, according to the Toronto Notes 2008, are a combination of either quinine and doxycycline or atovaquone and proguanil (Malarone). The drug is also effective for the treatment of atrial fibrillation in horses.