{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
US Approved Rx
(2023)
Source:
NDA216834
(2023)
Source URL:
First approved in 2023
Source:
NDA216834
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Approved Rx
(2023)
Source:
NDA216675
(2023)
Source URL:
First approved in 2023
Source:
NDA216675
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Perfluorohexyloctane (NOV03, MIEBO), a semifluorinated alkane, is the first drug developed to treat dry eye disease (DED) associated with Meibomian gland dysfunction in a highly effective way. Perfluorohexyloctane is an investigational, proprietary, water-free, non-steroidal, single-component preservative-free eye drop. Perfluorohexyloctane prevents excessive tear evaporation and has the ability to restore tear film balance. The investigational drug has a unique mode of action: it stabilizes the lipid layer for hours to protect the tear film and has the ability to penetrate the Meibomian glands. Perfluorohexyloctane contains 6 perfluorinated carbon atoms and 8 hydrogenated carbon atoms. Perfluorohexyloctane forms a monolayer at the air-liquid interface of the
tear film which can be expected to reduce evaporation. The exact mechanism of action for perfluorohexyloctane in DED is not known.
Status:
US Approved Rx
(2023)
Source:
NDA216974
(2023)
Source URL:
First approved in 2023
Source:
NDA216974
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Durlobactam is a new member of the diazabicyclooctane class of beta-lactamase inhibitors with broad-spectrum activity against Ambler class A, C, and D serine beta-lactamases. Sulbactam is a first-generation beta-lactamase inhibitor with activity limited to a subset of class A enzymes that also has direct-acting antibacterial activity against Acinetobacter spp. The latter feature is due to sulbactam's ability to inhibit certain penicillin-binding proteins, essential enzymes involved in bacterial cell wall synthesis in this pathogen. Because sulbactam is also susceptible to cleavage by numerous beta-lactamases, its clinical utility for the treatment of contemporary Acinetobacter infections is quite limited. However, when combined with durlobactam, the activity of sulbactam is effectively restored against these notoriously multidrug-resistant strains. In May 2023, the FDA approved Innoviva’s antibiotic, sulbactam-durlobactam (Xacduro), for treatment in patients 18 years of age and older for the treatment of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia (HABP/VABP) caused by susceptible isolates of ABC.
Status:
US Approved Rx
(2023)
Source:
NDA216993
(2023)
Source URL:
First approved in 2023
Source:
NDA216993
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Quizartinib (AC220) is an orally bioavailable, small molecule receptor tyrosine kinase inhibitor that is being developed by Daiichi Sankyo Company (previously Ambit Biosciences) and Astellas Pharma as a treatment for acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) and advanced solid tumours. The highest affinity target identified for Quizartinib was FLT3. The only other kinases with binding constants within 10-fold that for FLT3 were the closely related receptor tyrosine kinases KIT, PDGFRA, PDGFRB, RET, and CSF1R. Kinase inhibition of (mutant) KIT, PDGFR and FLT3 isoforms by quizartinib leads to potent inhibition of cellular proliferation and induction of apoptosis in in vitro leukemia models as well as in native leukemia blasts treated ex vivo.
Status:
US Approved Rx
(2023)
Source:
NDA217369
(2023)
Source URL:
First approved in 2023
Source:
NDA217369
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Approved Rx
(2023)
Source:
NDA218213
(2023)
Source URL:
First approved in 2023
Source:
NDA218213
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Repotrectinib (TPX-0005) Is a Next-Generation ROS1/TRK/ALK Inhibitor. It represents an effective therapeutic option for patients with ROS1-, NTRK1-3-, or ALK-rearranged malignancies who have progressed on earlier-generation tyrosine kinase inhibitors. In June 2017, The US Food and Drug Administration (FDA) granted orphan drug designation to this drug for the treatment of Non–small cell lung adenocarcinoma with an ALK, ROS1, or NTRK mutation.
Status:
US Approved Rx
(2023)
Source:
NDA216718
(2023)
Source URL:
First approved in 2023
Source:
NDA216718
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Omaveloxolone (RTA-408) is a synthetic triterpenoid exerting antioxidant inflammation modulator properties. It activates the transcription factor Nrf2 and inhibits NF-κB signaling. Omaveloxolone demonstrated antioxidant, anti-inflammatory, and anticancer activities. Reata Pharmaceuticals is developing omaveloxolone for the treatment of cancers, Friedreich's ataxia and mitochondrial disorders.
Status:
US Approved Rx
(2023)
Source:
NDA217417
(2023)
Source URL:
First approved in 2023
Source:
NDA217417
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Biafungin (formerly SP 3025 or CD101), a highly stable echinocandin and an antifungal drug that was studied against panels of Candida and Aspergillus clinical isolates. Biafungin was involved in phase II clinical trials in the treatment of acute moderate to severe vulvovaginal candidiasis. Seachaid Pharmaceuticals invented this drug. Then Cidara Therapeutics acquired a worldwide exclusive license to develop and commercialize the drug.
Status:
US Approved Rx
(2023)
Source:
NDA216956
(2023)
Source URL:
First approved in 2023
Source:
NDA216956
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
APD-334 (Etrasimod) was discovered as part of our internal effort to identify potent, centrally available, functional antagonists of the S1P1 receptor for use as next generation therapeutics for treating multiple sclerosis (MS) and other autoimmune diseases. APD334 is a potent functional antagonist of S1P1 and has a favorable PK/PD profile, producing robust lymphocyte lowering at relatively low plasma concentrations in several preclinical species. This new agent was efficacious in a mouse experimental autoimmune encephalomyelitis (EAE) model of MS and a rat collagen induced arthritis (CIA) model and was found to have appreciable central exposure. APD-334 has therapeutic potential in immune and inflammatory-mediated diseases such as ulcerative colitis, Crohn’s disease, and atopic dermatitis.
Status:
US Approved Rx
(2023)
Source:
NDA217639
(2023)
Source URL:
First approved in 2023
Source:
NDA217639
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Elacestrant (ER-306323 or RAD 1901 [6R)-6-(2-(N-(4-(2-(ethylamino)ethyl)benzyl)-N-ethylamino)-4-methoxyphenyl)-5,6,7,8-tetrahydronaphthalen-2-ol dihydrochloride]) is an estrogen receptor antagonist that binds to estrogen receptor-alpha (ERα). In ERpositive (ER ) HER2-negative (HER2-) breast cancer cells, elacestrant inhibited 17β-estradiol mediated cell proliferation at concentrations inducing degradation of ERα protein mediated through proteasomal pathway. Elacestrant demonstrated in vitro and in vivo antitumor activity including in ER HER2- breast cancer models resistant to fulvestrant and cyclin-dependent kinase 4/6 inhibitors and those harboring estrogen receptor 1 gene (ESR1) mutations. On January 27, 2023, the Food and Drug Administration (FDA) approved elacestrant (Orserdu, Stemline Therapeutics, Inc.) for postmenopausal women or adult men with ER-positive, HER2-negative, ESR1-mutated advanced or metastatic breast cancer with disease progression following at least one line of endocrine therapy.