{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Possibly Marketed Outside US
Source:
21 CFR 352
(2012)
Source URL:
First approved in 2001
Source:
21 CFR 333D
Source URL:
Class:
STRUCTURALLY DIVERSE
Status:
Possibly Marketed Outside US
Source:
M028
(2023)
Source URL:
First approved in 2001
Source:
21 CFR 333E
Source URL:
Class:
STRUCTURALLY DIVERSE
Status:
Possibly Marketed Outside US
First approved in 2001
Source:
M020
Source URL:
Class:
STRUCTURALLY DIVERSE
Status:
Possibly Marketed Outside US
Source:
21 CFR 333A
(2020)
Source URL:
First approved in 2001
Source:
21 CFR 352
Source URL:
Class:
G1 SPECIFIED SUBSTANCE
Status:
Possibly Marketed Outside US
Source:
NDA021303
(2001)
Source URL:
First approved in 2001
Source:
NDA021303
Source URL:
Class:
G1 SPECIFIED SUBSTANCE
Status:
US Approved Rx
(2018)
Source:
NDA022142
(2018)
Source URL:
First approved in 2001
Source:
NDA021356
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
CMX157 is a lipid (1-0-hexadecyloxypropyl) conjugate of the acyclic nucleotide analog tenofovir (TFV) with activity against both wild-type and antiretroviral drug-resistant HIV strains, including multidrug nucleoside/nucleotide analog-resistant viruses. CMX157 was designed to mimic lysophosphatidylcholine to take advantage of natural lipid uptake pathways and to achieve high intracellular concentrations of the active antiviral, with the aim of increasing the effectiveness of TFV against wild-type and mutant HIV. CMX157 demonstrated potential to effectively suppress replication of multiNRTI-resistant (MNR) HIV that cannot be treated with any currently available NRTIs, including TDF. It is in phase II clinical trial for HIV infections in USA and phase Ib portion of the phase I/II trial for Hepatitis B in Thailand (PO).
Status:
US Approved Rx
(2018)
Source:
NDA022142
(2018)
Source URL:
First approved in 2001
Source:
NDA021356
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
CMX157 is a lipid (1-0-hexadecyloxypropyl) conjugate of the acyclic nucleotide analog tenofovir (TFV) with activity against both wild-type and antiretroviral drug-resistant HIV strains, including multidrug nucleoside/nucleotide analog-resistant viruses. CMX157 was designed to mimic lysophosphatidylcholine to take advantage of natural lipid uptake pathways and to achieve high intracellular concentrations of the active antiviral, with the aim of increasing the effectiveness of TFV against wild-type and mutant HIV. CMX157 demonstrated potential to effectively suppress replication of multiNRTI-resistant (MNR) HIV that cannot be treated with any currently available NRTIs, including TDF. It is in phase II clinical trial for HIV infections in USA and phase Ib portion of the phase I/II trial for Hepatitis B in Thailand (PO).
Status:
US Approved Rx
(2018)
Source:
ANDA209345
(2018)
Source URL:
First approved in 2001
Source:
NDA021302
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Pimecrolimus, an ascomycin macrolactam derivative, is an inhibitor of T-cell and mast-cell activation, developed and launched by Novartis for the potential treatment of psoriasis and allergic, irritant and atopic dermatitis. The topical formulation had been launched in the US by February 2002 for mild-to-moderate atopic dermatitis in patients aged two years and older. Pimecrolimus is an immunomodulating agent. The mechanism of action of pimecrolimus in atopic dermatitis is not known. While the following have been observed, the clinical significance of these observations in atopic dermatitis is not known. It has been demonstrated that pimecrolimus binds with high affinity to macrophilin-12 (FKBP-12) and inhibits the calcium dependent phosphatase, calcineurin. Therefore, it inhibits T cell activation by blocking the transcription of early cytokines. In particular, pimecrolimus inhibits at nanomolar concentrations Interleukin-2 and interferon gamma (Th1-type) and Interleukin-4 and Interleukin-10 (Th2-type) cytokine synthesis in human T-cells. In addition, pimecrolimus prevents the release of inflammatory cytokines and mediators from mast cells in vitro after stimulation by antigen/IgE. Following the administration of a single oral radiolabeled dose of pimecrolimus numerous circulating O-demethylation metabolites were seen. Studies with human liver microsomes indicate that pimecrolimus is metabolized in vitro by the CYP3A sub-family of metabolizing enzymes. No evidence of skin mediated drug metabolism was identified in vivo using the minipig or in vitro using stripped human skin.
Status:
US Approved Rx
(2008)
Source:
ANDA079028
(2008)
Source URL:
First approved in 2001
Source:
RAZADYNE by JANSSEN PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Galantamine (RAZADYNE®, galantamine hydrobromide) is a benzazepine derived from norbelladine. It is found in Galanthus and other Amaryllidaceae. It is a reversible, competitive acetylcholinesterase inhibitor that is used for the treatment of mild to moderate dementia of the Alzheimer’s type. Although the etiology of cognitive impairment in Alzheimer’s disease is not fully understood, it has been reported that acetylcholine-producing neurons degenerate in the brains of patients with Alzheimer’s disease. The degree of this cholinergic loss has been correlated with degree of cognitive impairment and density of amyloid plaques (a neuropathological hallmark of Alzheimer’s disease). While the precise mechanism of galantamine’s (RAZADYNE®, galantamine hydrobromide) action is unknown, it is postulated to exert its therapeutic effect by enhancing cholinergic function. This is accomplished by increasing the concentration of acetylcholine through reversible inhibition of its hydrolysis by acetylcholinesterase. If this mechanism is correct, galantamine’s (RAZADYNE®, galantamine hydrobromide) effect may lessen as the disease process advances and fewer cholinergic neurons remain functionally intact. There is no evidence that galantamine (RAZADYNE®, galantamine hydrobromide) alters the course of the underlying dementing process.
Status:
US Approved Rx
(2011)
Source:
ANDA078365
(2011)
Source URL:
First approved in 2001
Source:
NDA021165
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Desloratadine is an active, descarboethoxy metabolite of loratadine. It acts by selective inhibition of H1 histamine receptor and thus provides relief to patients with allergic rhinitis and chronic idiopathic urticaria. Desloratadine was approved by FDA and it is currently marketed under the name Clarinex (among the others).