Stereochemistry | ABSOLUTE |
Molecular Formula | C34H50O12 |
Molecular Weight | 650.7536 |
Optical Activity | UNSPECIFIED |
Defined Stereocenters | 8 / 8 |
E/Z Centers | 1 |
Charge | 0 |
SHOW SMILES / InChI
SMILES
CCCCCCCC(=O)O[C@@H]1[C@@H](OC(=O)C(\C)=C/C)C(C)=C2[C@@H]3OC(=O)[C@@](C)(O)[C@@]3(O)[C@H](C[C@](C)(OC(C)=O)[C@@H]12)OC(=O)CCC
InChI
InChIKey=IXFPJGBNCFXKPI-FSIHEZPISA-N
InChI=1S/C34H50O12/c1-9-12-13-14-15-17-24(37)43-28-26-25(20(5)27(28)44-30(38)19(4)11-3)29-34(41,33(8,40)31(39)45-29)22(42-23(36)16-10-2)18-32(26,7)46-21(6)35/h11,22,26-29,40-41H,9-10,12-18H2,1-8H3/b19-11-/t22-,26+,27-,28-,29-,32-,33+,34+/m0/s1
Molecular Formula | C34H50O12 |
Molecular Weight | 650.7536 |
Charge | 0 |
Count |
MOL RATIO
1 MOL RATIO (average) |
Stereochemistry | ABSOLUTE |
Additional Stereochemistry | No |
Defined Stereocenters | 8 / 8 |
E/Z Centers | 1 |
Optical Activity | UNSPECIFIED |
The sesquiterpene lactone thapsigargin is found in the plant Thapsia garganica L., and is one of the major constituents of the roots and fruits of this Mediterranean species. In 1978, the first pharmacological effects of thapsigargin were established and the full structure was elucidated in 1985. Thapsigargin is a potent inhibitor of Sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) and is widely used to study Ca2+-signaling. Thapsigargin is a non-cell-type specific toxin with documented ability to kill a broad spectrum of cancer cell lines as well as normal endothelial cells, fibroblasts and osteoblasts. It induces a rapid and pronounced increase in the concentration of cytosolic calcium, due to blockade of the Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase (SERCA) pump to which it binds with high affinity. The increase in cytosolic calcium leads to induction of apoptosis and ensuing cell death. A prodrug, G-202 (mipsagargin) has been designed to target the blood vessels of cancer cells; the death of these blood vessels then leads to tumor necrosis. G-202 consists of a cytotoxic analog of thapsigargin coupled to a masking peptide which inhibits its biologic activity until proteolytic cleavage at the tumor site. The first clinical trials of this drug were initiated in 2008 for the treatment Advanced Solid Tumors.
Originator
Approval Year
Sourcing
Sample Use Guides
Patients with advanced solid tumours received mipsagargin (prodrug of thapsigargin) by intravenous infusion on days 1, 2 and 3 of 28-day cycles and were allowed to continue participation in the absence of disease progression or unacceptable toxicity. The dosing began at 1.2 mg m(-2) and was escalated using a modified Fibonacci schema to determine maximally tolerated dose (MTD) with an expansion cohort at the RP2D.
Route of Administration:
Intravenous
It was investigated cytotoxicity, oxidative stress and inflammatory responses in ZnO nanoparticles (NP) exposed human umbilical vein endothelial cells (HUVECs) with or without the presence of thapsigargin (TG). The presence of 250 nM TG significantly induced cytotoxicity, release of IL-6 and THP-1 monocyte adhesion (p < 0.01), but did not significantly affect intracellular ROS or release of TNFα (p > 0.05). ANOVA analysis indicated no interaction between exposure to ZnO NPs and the presence of TG on almost all the endpoints (p > 0.05) except neutral red uptake assay (p < 0.01)