Stereochemistry | RACEMIC |
Molecular Formula | C16H17NO3 |
Molecular Weight | 271.3111 |
Optical Activity | ( + / - ) |
Defined Stereocenters | 0 / 1 |
E/Z Centers | 0 |
Charge | 0 |
SHOW SMILES / InChI
SMILES
OC1=CC=C(CC2NCCC3=C2C=C(O)C(O)=C3)C=C1
InChI
InChIKey=WZRCQWQRFZITDX-UHFFFAOYSA-N
InChI=1S/C16H17NO3/c18-12-3-1-10(2-4-12)7-14-13-9-16(20)15(19)8-11(13)5-6-17-14/h1-4,8-9,14,17-20H,5-7H2
Molecular Formula | C16H17NO3 |
Molecular Weight | 271.3111 |
Charge | 0 |
Count |
MOL RATIO
1 MOL RATIO (average) |
Stereochemistry | RACEMIC |
Additional Stereochemistry | No |
Defined Stereocenters | 0 / 1 |
E/Z Centers | 0 |
Optical Activity | ( + / - ) |
Higenamine HCl (norcoclaurine) is a plant-based alkaloid widely used as nutritional supplement in food and beverage industries. It exists in variety of plants including Tinospora crispa, Nandina domestica, Gnetum Parvifolium C.Y. Cheng, sarum Heterotropoides, Nelumbo nucifera. It was initially isolated from Aconitum and identified as the active cardiotonic component of this medicinal plant used as local and traditional medicines in many Asian regions for the treatment of various diseases such as collapse, syncope, painful joints, oedema, bronchial asthma etc. Various pharmacological properties and potentially multi-spectral medical applications of higenamine have been reviled in many in vitro and in vivo studies conducted in animals and humans. Pharmacological properties of higenamine include positive inotropic and chronotropic effect, activating slow channel effect, vascular and tracheal relaxation effect, anti-thrombotic, anti-apoptotic and anti-oxidative effect, anti-inflammatory and immunomodulatory effect. Studies on higenamine showed potential therapeutic effects for diseases like heart failure, disseminated intravascular coagulation (DIC), shock, arthritis, asthma, ischemia/reperfusion injuries and erectile dysfunction. Higenamine has been tested as a candidate of pharmacologic stress agent in the detection of coronary artery diseases (CADs) in human clinical studies in China. In animal models, higenamine has been demonstrated to be a β2 adrenoreceptor agonist. It partly exerts its actions by the activation of adenylate cyclase, responsible for boosting the cellular concentrations of the adrenergic second messenger, cAMP. Via a beta-adrenoceptor mechanism higenamine, induced relaxation in rat corpus cavernosum, leading to improved vasodilation and erectile function. Related to improved vasodilatory signals, higenamine has been shown to possess antiplatelet and antithrombotic activity via a cAMP-dependent pathway, suggesting it may contribute to enhanced vasodilation and arterial integrity. Anti-apoptotic and cardiac protective effects of higenamine were shown to be mediated by the β2-AR/PI3K/AKT cascade. Higenamine is marketed as a dietary supplement for weight loss and sport performance, and is added to many fat burning supplements. Along with many other β2 agonists, higenamine is prohibited by World Anti-Doping Agency for use in sports.
CNS Activity
Originator
Approval Year
PubMed
Patents
Sample Use Guides
Higenamine is usually dosed between 20-40 mg. However, some preworkout supplements go as high as 75 mg. Currently there is no evidence to support the optimal dose. Intravenous administration of 22.5 μg/kg higenamine was reported to be well-tolerated in healthy volunteers.
Route of Administration:
Other
Effects of higenamine on Na+, K+ and Cl- transport were studied on stripped guinea pig distal colonic mucosa in vitro using Ussing chambers. Addition of 10(-5) M higenamine induced a biphasic change in short circuit current (Isc): a transient increase followed by a long-lasting decrease that was accompanied by an increase in transepithelial conductance (Gt). The initial transient increase was not observed at the lower concentration of higenamine (10(-8)-10(-6) M).